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Abstract. Five procedures of mixed finite element type for solving elliptic partial differential
equations on triangular meshes are presented: the standard and hybrid mixed methods, the recently
introduced expanded mixed method, and two new methods. The efficient implementation of these
procedures using the lowest-order Raviart-Thomas approximating spaces defined on triangular ele-
ments is discussed. The standard method yields a saddle-point linear system, and while the hybrid
method yields a positive definite linear system, it uses 50% more unknowns. A quadrature rule is
given which reduces a new, expanded formulation of the mixed method to a finite difference method
on triangles. This approach substantially reduces the complexity of the mixed finite element ma-
trix. On smooth meshes this new approach appears to be as accurate as the standard method; on
non-smooth meshes it can lose accuracy. An enhancement of this method is derived which combines
numerical quadrature with Lagrange multipliers on certain element edges. The enhanced method
regains the accuracy of the solution, with little additional cost if the mesh geometry is piece-wise
smooth, as in hierarchical meshes. Numerical examples in two dimensions are given comparing the
accuracy of the methods.

Keywords: Mixed finite element method, elliptic partial differential equation, finite differences,
triangles

AMS(MOS) subject classification: 65N30, 65N06, 65N22

1. Introduction. In this paper, we discuss several variations of the mixed finite
element method for solving elliptic equations of the form

(1) =V (K(x)Vp(x)) = f(x), x€Q,

where € is a polygonal domain in IR?, K (x) is a positive definite matrix, and for
simplicity, we assume the boundary condition

2) p(x) =0, x€ Q.

We concentrate on the efficient solution of (1) and (2) using the lowest-order Raviart-
Thomas approximating spaces (RTp) on triangular elements in two dimensions.

The mixed method (MM) was first described in [19]. The method has seen in-
creasing popularity and an extensive literature has developed. The MM is especially
useful for problems where the velocity or strain u = —KVp is an important quantity,
since, in general, mixed methods approximate u and the potential p to the same order
of accuracy. Furthermore, the approximate velocity calculated by the mixed method
satisfies the conservation principle V -u = f almost everywhere. This property is
important in applications where local conservation of mass is essential.

General convergence properties of the MM are now well-understood. Convergence
and superconvergence estimates can be found, for example, in [19, 8, 16, 23, 10, 11].
Since the standard MM yields a linear system that represents a saddle-point problem,
much current research on the MM involves how to efficiently solve the system of
equations that arises, see for example, [13, 5, 6, 12, 21, 17, 1].

Perhaps the earliest successful technique was the hybrid form of the mixed method
(HM) [3]. This turns the saddle-point problem into a semi-definite problem, but at
the expense of greatly increasing the number of unknowns.
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Our primary interest in the MM is for solving elliptic and parabolic equations
arising in flow through porous media, in particular, oil reservoir simulation and con-
taminant transport. In oil reservoir simulation, mixed finite element methods dis-
guised as cell-centered finite difference methods have been the standard approach for
many years [18]. The relationship between the mixed method and cell-centered finite
differences was established in [20], under the assumption that K in (1) is a scalar or
a diagonal matrix. If one uses the RT} approximating spaces on rectangular elements
and applies appropriate quadrature rules, the mixed method reduces to a five-point
cell-centered finite difference method for the potential p. Based on this observation,
Weiser and Wheeler [23] were able to analyze and prove superconvergence for the po-
tential and velocity approximations generated by this method. The resulting matrix
problem is definite and generally much easier to solve than the problem which arises
using the standard mixed method without quadrature.

Recently, a variation of the mixed method [1, 2] has been developed which has
advantages over the standard approach for tensor and positive semi-definite coeffi-
cients K. In this method, an auxiliary variable is introduced to avoid inverting K,
allowing K to be nonnegative — the standard mixed method assumes K is strictly
positive. This expanded mixed method has the additional advantage over the MM
that numerical quadrature can be used on rectangular meshes to derive a finite dif-
ference stencil even when K is a matrix function. We refer to this approach as
the AWYM (Arbogast-Wheeler-Yotov method); convergence and superconvergence
results are given in [1, 2].

In this paper, we derive a quadrature rule for triangular elements which reduces
the expanded mixed method to a finite difference method for potential. In two di-
mensions, the finite difference stencil has ten points. As we demonstrate by example,
the method is easy to solve and is as accurate as the MM, provided that the triangu-
lation is “smooth”. However, applying the quadrature rule on general triangulations
can in some cases lead to an undesirable loss of accuracy in the solution. The loss
of accuracy is caused by discontinuities in a mapping function which depends on the
computational domain and the elements used in the triangulation. In cases where
smooth triangulations can be used, the discontinuities disappear and no loss of accu-
racy occurs. Nevertheless, our ideas are useful for nonsmooth meshes for two reasons.
First, the method can be used as a preconditioner for the MM or the AWYM without
quadrature. Second, the loss of accuracy can be avoided by enhancing the method
with Lagrange multipliers on element faces where the discontinuities appear.

The rest of this paper is outlined as follows. In the next Section, we give notation
used throughout the paper. For completeness, we review the basic MM [19] in Section
3, the HM [3, 4] in Section 4, and the AWYM [1, 2] in Section 5. After this introduc-
tory material, we define the “cell-centered stencil method” (SM) in Section 6, which is
the triangular analog of the AWYM. It is useful for smoothly triangulated domains.
In Section 7, we work out an example to show why the SM can lose accuracy on non-
smooth meshes. In Section 8, we define the “enhanced cell-centered stencil method”
(ESM), useful for triangulations consisting of the union of a small number of smooth
triangulations. The ESM is a combination of the SM and the HM; it appears to give
the same accuracy as HM with potentially much less computational cost. Finally, in
Section 9, we present several numerical examples comparing the MM, HM, SM, and
ESM. We also discuss briefly problems in three space dimensions. A C++ package
which implements all of the methods presented here has been developed by the third
author. More information on this package can be found in [14].
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2. Notation. Let L?(R) denote the standard Sobolev space of square-integrable

functions g on a domain R € IR?. We denote by (s *)r the L?(R) inner product, and
the L2(R) norm is denoted by

(3) ll9llz = (9,9)}-

Denote by (-, )ar the L2(8R) inner product. Define

(4) H(div;R) = {u= (u',u?) :u e (L*(R))?and V -u € L*(R)},
with norm
(5) ey = [ (1ol +19 - uf?] dx.

When R = Q, we may omit it in the definitions above.

Let 7;, denote a triangulation of Q into triangles with maximum diameter h > 0.
Associated with 7}, the RTp spaces Vi, C H(div;Q) and W), C L%(Q) are characterized
as follows [19]. Let Np denote the number of triangles in 7, and N, the number of
edges. Then

Wh = span{w,-,i = 1, . .,NT : (w;)l;rj = 6ij,j = 1, .. .,NT}.
Letting n, denote one of the unit vectors normal to edge ¢, denoted by ey,

Vi =span{vy € H(div;Q), k=1,...,N,:
vilr € (PY(T))* @ xP°(T) forall T € Ty, and
Vk'nl|e¢=§k£; £=1"--5Ne}a

where P(T) denotes the set of constant functions defined on T € 7j,. Specifically, in
IR?, the function v = (v}, v2) € Vj, is given on T by

(lr = o+ pz,
(Dlr = o+ By,
with the three coefficients determined by the requirements
(6) Vi - Ngle, = Opy.

Thus vy is nonzero only on the two elements which share edge k.
3. The Standard Mixed Method. To derive the MM[19], we rewrite (1) in
mixed form:
(M) u(x) —K(x)Vp(x),
(8) Vou = f

Multiplying (7)-(8) by appropriate test functions and integrating we obtain

(9) (K~'u,v)—(p,V-v) = 0, veH(iv;Q),
(10) (V-u,w) = (f,w), weL*Q).
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In the MM, we seek U € V4, and P € W, that satisfy

(11) (KT'U,v)=(P,V-v) = 0, veW,
(12) (V‘U:w) (f,w), w € Wh.

Define matrices M and B by

(13) Mi‘ = (K—IVJ',V,'), i,] = 1)"-)Ne’
(14) Bj; (w;,V-v), i=1,...,N,; j=1,..., Nr,

and vectors U, P, and F by

N.
(15) U(x) = Ujv;(x),
j=1
Nr
(16) P(x) = ) Puwi(x),
i=1
(17) E7 = (f)wj); j=1$-'-;NT'

Then U and P can be found by solving the matrix equation
M -B][U 0
a L D[R] [F]
Existence and uniqueness of U and P follows from our assumption of Dirichlet bound-

ary conditions on p and the fact that M is positive definite, since (18) can be rewritten
as

(19) U (M~'B)P,
(20) AmmP = (BTM'B)P = F,

where Ayv = BT M~1B is symmetric and positive definite.

If exact integration is used in (13), then M is a sparse matrix but M~ is full.
When using an iterative method such as conjugate gradient iteration to solve (20),
applying the matrix Ay to a vector implies solving a system of equations involving
the matrix M. As mentioned in the Introduction, in the special case of rectangular
elements and K a scalar or a diagonal matrix function, then applying the appropriate
quadrature rules to (13) reduces M and M~! to diagonal matrices without reducing
the accuracy of the approximate solutions [23]. In particular, assuming K is scalar,

(21) (K~ 'vj,vi) = (K-lv},v}) +(K*lv]?,v,? ,

and we can approximate the first integral on the right side using the trapezoidal rule
in z and the midpoint rule in y, using the reverse rules for the second integral. The
matrix Avm then becomes sparse with nonzero entries on five bands, and the cost of
applying an iterative procedure to the solution of (20) is greatly reduced. In fact, the
method reduces to the standard cell-centered finite difference method.

It was proven in [19] that for u and p sufficiently smooth, the RTy approximations
U and P satisfy

(22) [la = Ul|ggivia) + ||P — pl| < Ch,
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where C'is a constant independent of h. For rectangular meshes and K a scalar or
diagonal matrix, superconvergence of order h? of the velocity U and potential P at
Gauss points was proven in [16]. These results were extended in [10] to demonstrate
superconvergence of velocities along lines connecting Gauss points. In [23], these re-
sults were shown to hold even when numerical quadrature of the type discussed above
is used to approximate the integral (K~1vj,v;). On triangular meshes, superconver-
gence of the potential P of order h2? at the centroid of each triangle was proven in
[11, 8]. No superconvergence results for velocity are known in this case. Qur numer-
ical results seem to indicate that the velocity is not superconvergent on triangular
meshes.

4. The Hybrid Method. Next, we consider a hybrid version of the MM (HM)
[3], where Lagrange multipliers are introduced on the element edges. We modify the
RTy spaces slightly, introducing spaces V) and Aj, with Vy replacing Vj,. For each
triangle T' € 7), with edges e, k=1,2,3, we associate basis functions vy, that satisfy
vrk € (P°T))? @ xP°(T) and vr i - 0y = & ;, where n is the unit outward normal
(with respect to T') to edge e;. The space V; C (L2(R))? is given by

Vh, = spa’n{vT,k)k = 1)2$3) Te 771};

it is Vj with relaxed continuity requirements. Let E denote the union of all element
edges in 7;. The space Ay C L?(E) is given by

(23)  An=span{p;,j=1,...,N.:p; =1 onedge j and 0 elsewhere}.

Let A) = AN {v:v =0 on 3Q}.

Returning to (7)—(8), multiplying by appropriate test functions and integrating,
we find

(24) (K7'a,v) = (p,V-v)= Y (p,v-nr)or, ve€(L*(Q)),
TeTy
(25) (V-u,w) = (f,w), weL*Q).

In (24), n7 represents the unit outward normal to 0T. Approximate u by U € Vi, p
in each element T' by P € Wy, and p on 8T by A € A). The unknowns U, P, and A
satisfy

(26) (K~'U,v) = (P’V'V)"Z(/\;V'HT>3T, vev,
TeTn
(27) (V-U,w) = (fiw), weWs,
(28) Y (U-.nr,per = 0, peAl.
TeT:

It is easily shown that (26)—(28) is equivalent to the MM; that is, U € V}, and U and
P satisfy (11)-(12). Thus, the convergence and superconvergence of the HM follows
from the analysis for the MM.

The computational difference between (26)-(28) and (11)-(12) is that one can
solve directly for A, and then compute U and P. Let U, P, and X denote the vectors
of unknowns associated with the functions U, P, and A, respectively. In matrix form,
(26)—(28) can be written as

M -B L U 0
LT 0 o0 A 0
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This system can be reduced to an equation for X as follows. The first equation in (29)
gives

(30) U=M"YBP-L.

From the second equation equation and (30)

(31) BTU = BT"M~Y(BP - L)) = F;
thus,
(32) P=(BTM™'B)™ (F+BTM'L}).

Let A7' = BTM~!B. Finally, from the third equation, (30), and (32), we find
(33) (L"TM~'BABTM™'L - LTM~'L)A = —(LTM~'BA)F.

Let Apm denote the matrix on the left side of (33).

The matrix M is block diagonal; each block corresponds to one triangle in 75, and
1s a symmetric, positive definite, 3x3 matrix. Hence M ~! is also block diagonal and
easy to compute. The matrix BT M~!B has the same structure, so A; is also block
diagonal. Furthermore, L has at most two nonzero entries on any row or column;
thus, Agm can be formed and is sparse, with at most five nonzero entries on any
row. The stencil for A is given in Figure 1. Hence, the advantage of solving (33)
over (20) for triangular meshes is that the matrix Ay is easier to apply than Anpy.
The disadvantage is that (33) involves 50% more unknowns than (20), and in three
dimensions, this ratio is 2:1 for tetrahedra and 3:1 for bricks.

?l

F1G. 1. Stencil for X for the HM

5. The AWY Expanded Mixed Method. In this section, we present the
Arbogast-Wheeler-Yotov variation of the MM [1, 2]. We introduce a mesh-dependent
function Sy, which we define explicitly below. For now, assume S, is a symmetric,
positive definite, 2x2 matrix function. We also introduce an auxiliary variable y,
defined by

(34) Sgy = =Vp;
then

(35) Syu=5,KS,y.
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If Sg(x) is invertible, (34)(35) is equivalent to (7). With (8), a corresponding weak
form is given by

(36) (Sgy,v) = (»,V-v), v € H(div; Q),
(37) (Squ,z) = (SgKSgy,z), z € (L*(Q))?,
(38) (V-u,w) = (fiw), we L*Q).

Let T denote any triangle in 75, and let Tyef denote a reference element, which
we assume is the equilateral triangle with vertices at (~1,0), (1,0), and (0,v/3). Let
Dt denote the constant Jacobian matrix of the affine mapping between element 7'
and Tpf, and let Jr = |det Dr|. On each element T' in 7;, define Sy by

(39) Sylr = Jr(D7)T Dy,

Note that S; on each element is indeed symmetric and positive definite. We approx-
imate y by Y € Vi, u by U € V,, and p by P € W;, where Y, U, and P satisfy

(40) (S;Y,v) = (P,V-v), veW,
(41) (S,U,z) = (S,KS,Y,z), z€V;,
(42) (V- U,w) = (fiw), weW.

Introduce the matrices S and C defined by

(43) S,'j = (Sng,V,'), i,j:l,...,Ne,
(44) Cij = (SgKSng,v,'), t,5,=1,..., N,

and define B as before in (14). Let Y, I_J_, and Pbe the vectors of unknowns associated
with Y, U, and P, respectively. Then Y, U, and P satisfy

S 0 -B Y 0
0 BT o P F

In this case, S and C are symmetric, positive definite, and sparse, and (45) implies

(46) Y = S7'BP,
(47) U = S7'Ccs !'BP,
(48) AswymP = (BTS"'CS™'B)P = F.

The matrix Aawym = BTS~1CS~!B is symmetric and positive definite; hence, P
exists and is unique, and the existence and uniqueness of U and Y follow from (47)
and (46). ‘

One advantage of the AWYM over the MM is that the weak form (36)—(38) does
not require calculating K~! as in (9)-(10). Thus, the AWYM is definable in cases
where K(x) = 0. For time-dependent problems where K may vary with time, the
AWYM also has the advantage over the MM that only S~! is needed in the computa-
tion, not M~1. Unlike M, S is not time-dependent and hence S=! can be calculated
once at the beginning of the computation, whereas M~! must be recomputed each
time-step.

In general, the computational expense of the AWYM and the MM are roughly
equivalent, since S™! and M~! are both full matrices. In the case of rectangular
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elements, however, we can choose Sg = I, the identity matrix, and the integrals in
(43) can be approximated by quadrature rules as in the MM, reducing S to a diagonal
matrix [1]. Thus, like Ay, Aawym becomes a sparse, banded matrix. Another
advantage of the AWYM over the MM is that this reduction can be applied even
when K is a matrix function, since K does not enter into the computation of S. This
reduction is especially useful, for example, in transport equations where K represents
a diffusion-dispersion tensor.

The convergence theory for the AWYM is given in [1, 2], where it is shown that
pressure and velocity are globally first order accurate, and pressures are superconver-
gent at the center of mass of each element, provided that Sy varies smoothly over the
domain. In our case, S, is piecewise discontinuous, so this convergence theory does
not apply directly.

6. The Stencil Method on triangles. As noted above, applying the AWYM
or the MM on general triangulations gives matrices which are expensive to apply. In
this section, we describe a method for approximating the integrals in (43) on triangular
meshes which diagonalizes the matrix S. The result is a sparse approximation to
Aawym that in two space dimensions has at most ten nonzero entries on any given
row. We refer to this approach as the Cell-Centered Stencil Method, or SM.

On any triangle T', let v denote the basis function of V}, associated with edge k,
denoted by ex, k =1, 2, 3. On Ty, let é; denote the edge which is the image of e;
when T is mapped to Tyes. Define the Piola transformation [22] for vectors by

(49) \A’k = JTDTVk, k= 1,2,3.

It can then be verified that
(50) / (Sgve)-vidx = / Vi - V7 dx,
T Tref

for k,1 = 1, 2, 3. Moreover, from (49), one can show that v is a scalar multiple of
the standard basis function for V, corresponding to edge k of Tper. Thus,

(51) Vi oy = oy, k,1=1,2,3,
where 1, is the normal to edge I on T, and oy is a scale factor,

_ length e

(52) B length é;

In order to diagonalize the matrix .S, we seek a quadrature rule which diagonal-
izes (50). We define a quadrature rule Qr(g) on Tyef such that Qr(g) is exact for
polynomials of degree one, and Qr (Vi - v;) = 0 for k # I:

(53) Qr(g) = _\g_g [y(—l, 0) +9(1,0) +9(0,v3) + 3¢ (o, ?)] :

Thus, by (50),

L. 0,
(54) /T(ngk) Vi dx ~ Qr(Vr - Vi) = { @( length ex)?,
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Let Sp denote the diagonal approximation to S determined by the quadrature
rule given above. Define

(55) Asm = BT S;'CSp'B.

Then Asy is a sparse approximation to Aawyn. The resulting stencil for P is given
in Figure 2. In particular, on any row of Agy, there are at most ten nonzero entries.

/N
WV

F1G. 2. Stencil for P for the SM

The approach described above can easily be extended to three space dimensions,
using a similar quadrature rule. In this case, Agy has at most seventeen nonzero
entries.

7. A Non-smooth Mesh Example. In this section we discuss mesh smooth-
ness and refinement processes and their impact on the accuracy of the SM. We say
that a mesh is smooth if it is the image under a smooth map f of a mesh of equi-
lateral triangles. Of course, any mesh can be called smooth under this definition by
making f have large derivatives. The cost is that the constant in convergence rates
will depend on the derivatives of f. We say a mesh refinement process (as used in
a convergence study, for instance) is smooth if it can be carried out by uniformly
refining the mesh of equilateral triangles and taking the image under the same f. A
mesh refinement process is called hierarchical if an initial coarse mesh is refined using
a smooth refinement process inside each of the original coarse elements.

In practice, most applications use meshes and refinement schemes which can be
classified as smooth or hierarchical. The numerical experiments in Section 9 show that
on smooth meshes, the SM is as accurate as the MM. As this section will illustrate, the
accuracy of the SM can be impared by using non-smooth meshes. Section 8 will define
an Enhanced Stencil Method which corrects this problem efficiently for hierarchical
mesh refinement processes.

Consider the two triangle mesh shown in Figure 3. Using Dirichlet boundary
conditions and taking the true solution p = y, one can work out the computed solution
P and U by hand. The usual mixed method would reproduce the linear P and
constant U exactly. The SM, in contrast, fails to compute either correctly; for instance
it yields P = 0.35714 for the pressure at the centroids of the triangles, instead of
0.33333. If uniform refinement is applied to this mesh, the errors converge much more
slowly than with the MM.

Figure 4 shows the error P — p when p is a linear function, on a much finer mesh
constructed from applying uniform refinement to an original coarse mesh of 2 non-
similar triangles. Darker shades indicate larger errors. Within each of the original
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0.1

('1’0) (_1’0) (1’0)

Fi1G. 3. A non-smooth mesh.

F1G. 4. Error in P — p on a hierarchically refined mesh using the SM
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triangles the mesh is smooth; the jump in Sy across the central line produces the error
pattern shown, somewhat like an artificial source term.

The problem is that y = Sg‘IVp is discontinuous across faces where Sy changes
discontinuously, but it is approximated by a function Y € V; which is constrained to
have continuous normal components across faces. This suggests that adding Lagrange
multipliers to such faces, thereby enriching the discrete space in which Y is defined,
should solve the problem. The ESM of Section 8 does precisely this, and can be shown
to solve the two element problem of Figure 3 exactly in the case of linear p.

8. The Enhanced Stencil Method. In this section, we discuss the Enhanced
Cell-Centered Stencil Method (ESM), which is a combination of the SM with Lagrange
multipliers added at edges where S, is not smooth.

In the HM, Lagrange multipliers were introduced on the boundary of every ele-
ment in 7. In some cases, Lagrange multipliers are only needed on the boundaries
of a few elements. For example, when applying the domain decomposition techniques
described in [13], Lagrange multipliers are introduced only on the element edges where
subdomains intersect. In this method, just as in (33), one can reduce the global sys-
tem of equations to an equation for the Lagrange multipliers. Applying the resulting
matrix operator involves solving subdomain problems for velocity and potential. In
this section, we follow a similar approach, introducing Lagrange multipliers only on
certain element edges. This defines the Enhanced Cell-Centered Stencil Method. In
this case, the multipliers are needed to preserve accuracy of the numerical solution;
however, as a side effect, they can be used to introduce parallelism into the solution
process as well.

In order to describe the basic idea, consider a domain § consisting of two regions
1 and Q; separated by an interface T, such as that given in Figure 5. Assume a
triangulation of Q is constructed, where Sy is smooth in Q; and Q3 but not necessarily
smooth along I'. In ©Q; and Qs we will apply the SM as described above. The two
subdomains will be coupled by Lagrange multipliers along the edge T.

Q. I 9

Fi1G. 5. Domain decomposition

Let 7,f denote a triangulation of Q, k = 1,2, and 7; = 7,! UT2. We assume
the triangulations 7;! and 7,2 match at the edge T, so that 7Ty, is a valid triangulation
of the whole domain Q. Let V;¥ C H(div; Q¢), Wf C L?(Qk) denote the RT, spaces
on T, k=1,2. Let V; = V;} UV;2, and W, = W} UW}2. Let A% € L%(T) denote the
restriction to I' of the space Aj defined in (23).

Returning to (34)—(35), (38), multiplying by appropriate test functions and inte-
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grating, we obtain

2
(56) (Sgy,v)=(p,V-v)= > (p,v-m)r, v € H(div; 1)U H(div;Q3),
k=1

where n;, is the outward normal to 8Q; NT, k= 1,2,

(57) (Squ,z) = (S,KSpy,2), =€ (L*(Q))?
(58) (V-ww) = (fiw), wel?*Q).

Let Y, U € Vi, P € Wj, and X € A}, where Y, U, P, and A approximate y, u, p,
and p|r, respectively, and satisfy

2

(59) (S;Y,v) = (BV-v)=) (Av-m)r, veV,
k=1
(60) (SyU,2) = (S4KS,Y,z), z€Vy,
(61) (Van) = (f,w), U)EW}”
2
(62) Y(U-np,pr = 0, peA;.
k=1

We approximate the left-most terms in (59) and (60) using the quadrature rule (54).
In matrix form, (59)—(62) (with quadrature) can be written as

SP 0 -B L Y 0

C -5 0 0 | _|o

(63) 0 BT 0 0 P|T|F
o LT o0 o0 A 0

This system can be reduced to a system for P and X as follows. From the first
equation,

(64) Y = SpY(BP - L)).

From the second equation and (64),

(65) U = S;'CS (BP - LA).

Let A; = 5’51@5'51. From the third equation and (65),

(66) BTU = (BT A3B)P — (BT A,D)) = F,
and from the fourth equation and (65),

(67) —ITU = —(LTA;B)P + (LT A:D)X = 0.

Thus we obtain the system

© [ 2 ]I5)-[0]
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where Az = BTAZ;B, Ay = f/TAzf,, and D = —BT A,L. Denote the matrix on the
left side of (68) by Agsm. If desired, (68) can be further reduced to an equation for A
alone, in particular,

(69) P =A31(F - D)),
and
(70) (A4 — DTAF'D)X = —DT A3 F.

In [13, 5, 12, 6], various methods for solving (70) on parallel computers are developed
and analyzed. In all of these approaches, applying the matrix on the left side of (70)
involves solving a problem of the form

(71) Asz=b

for some vector  and right hand side b. The matrix A3 decouples across subdomains,
thus (71) involves independent subdomain problems which can be solved simultane-
ously.

The matrices A3, D, and A4 can be formed and easily applied to vectors. In par-
ticular, the ESM can be thought of in a domain decomposition setting as introducing
Lagrange multipliers on subdomain boundaries, then using the SM within each sub-
domain. However, we require more generality. In particular, we introduce Lagrange
multipliers across any edge where S, is discontinuous. Depending on the geometry of
the domain and the type of triangulation used, this may result in introducing a sub-
stantial number of Lagrange multipliers. However, for domains which can be divided
into a relatively small number of regular domains, where uniform triangulations can
be used, the ESM should be roughly as efficient as the SM.

9. Numerical results. We created a large suite of test problems which we used
to examine the behavior of the numerical methods described above. We varied the
shape of the domain, the coefficient tensor K, and the analytic solution. In each
case the boundary conditions and the forcing term were constructed to match the
prescribed solution. We report in detail on two typical cases and then summarize the
results from the full test suite.

9.1. Two Typical Cases. Among the domains considered were those shown in
Figures 6 and 7. These figures illustrate the initial decomposition of the domains into
elements. The second domain is neither simply connected nor convex; moreover we
chose to use both rectangles and triangles in subdividing it, to illustrate the flexibility
of the C++ program.

In the convergence study, the smooth example domain was described by cubic
splines, which were used to generate progressively finer meshes directly. The resulting
family of meshes meets the definition of smooth given in Section 7.

In contrast, the non-smooth example domain was refined uniformly to generate
progressively finer meshes. Each application of uniform refinement replaced each
triangle or rectangle with 4 smaller but geometrically similar ones. The finest mesh
had 2432 elements. Uniform refinement generates hierarchical meshes: each new mesh
contains all the edges of the previous one. However, discontinuities in the geometry
mapping across edges of the original coarse triangulation are not smoothed out by
refinement. Thus this family of meshes is hierarchical but not smooth, as defined in
Section 7.
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FI1G. 6. Smooth Mesh Ezample

F1G. 7. Non-smooth Mesh Ezample
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In Tables 1-4, we give detailed results on both domains for a test problem using
Dirichlet boundary conditions,

and with the analytic solution

p(z,y) = 1.22° + 2.12%y + 3.12y° — 4.1y3 — 1.12% + 24zy+ 1.7y% + 2z — 3y + 1.

We report the 12 norm of the error in the pressure p and the flux KVp. The {2 norm
is the discrete two-norm taken at the centers of elements. The error in the flux refers
to the flux as a vector, not to just one component. As can be seen in Tables 1 and 2,
the MM, HM, and SM are equally accurate for the smooth example. The nonsmooth,
hierarchical example of Tables 3 and 4, however, shows that the SM loses accuracy
(about one half power of &) in both p and —K Vp, as compared to the MM and HM.
However, the ESM is as accurate as the MM and HM in all the examples.

h MM = HM | SM

0.01 0.010 0.0064

0.0025 | 0.0027 0.0015

0.0006 | 0.00068 0.00037

Rate h? h?
TABLE 1

12 error in p for the smooth ezample

h MM = HM | SM

0.01 0.62 0.63

0.0025 | 0.32 0.32

0.0006 | 0.16 0.16

Rate h h
TABLE 2

12 error in KVp for the smooth ezample

h MM = HM | SM ESM
0.16 0.39 0.48 0.59
0.08 | 0.11 0.12 0.11
0.04 | 0.029 0.043 | 0.026
0.02 | 0.0076 0.019 | 0.0062
Rate | h? hi4 | h2
TABLE 3
2 error in p for the non-smooth ezample
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h MM = HM | SM | ESM
0.16 | 6.0 9.3 (6.4
0.08 | 3.1 59 | 3.5
0.04 | 1.5 3.7 | 1.6
0.02 | 0.77 2.5 |0.80
Rate | h hO¢ | h
TABLE 4
2 error in KVp for the non-smooth ezample

9.2. Tetrahedra. The C++ program can handle three dimensional elements
such as bricks and tetrahedra. We observed numerically that the stencil approach
breaks down on tetrahedral meshes. This appears to be due to the fact that regular
tetrahedra do not fill space, whereas equilateral triangles do tile the plane. This means
that the geometry matrix Sy is unavoidably discontinuous everywhere, no matter how
much one attempts to smooth the tetrahedral mesh. Therefore, the HM seems to be
the best choice for tetrahedral meshes. The SM could, however, be used with prismatic
elements on meshes constructed from the tensor product of a triangular mesh in two
dimensions and a one dimensional collection of intervals.

9.3. Summary. We conducted approximately 100 experiments varying the do-
main, the shape of the elements, the type of mesh refinement used, the test equation,
and the tensor K.

For most methods and test cases, the condition number of the linear system was
O(h~1), as estimated by the number of conjugate gradient iterations used. However,
the ESM combined with uniform refinement produced better conditioned systems,
with condition numbers around O(h~°9). Using a conjugate gradient solver with no
preconditioning, the MM took much longer than the other three methods (approxi-
mately 50 times longer on 2000 elements). On a typical smooth mesh problem the
SM took approximately half as much CPU time as the HM. The ESM was somewhat
slower than the HM on coarse meshes, since it solves for both pressures and Lagrange
multipliers. By around four levels of mesh refinement it had caught up to the HM,
since it did not need Lagrange multipliers on every edge, and it should outperform it
when additional refinement is used.

The error in the pressure converged approximately like O(h?) for the MM, HM,
SM, and ESM, except that the SM converged at a slower rate for hierarchical meshes;
that is, in non-smooth situations, where the geometry matrix changes discontinuously
because of uniform refinement. Similarly the error in the flux converged like O(h),
except for SM with geometry discontinuities. Using smooth refinement on the non-
smooth domain illustrated above in Figure 7, the SM achieved the same convergence
orders as the other methods.

On rectangles one finds that the velocities are superconvergent at special points
and can be post-processed to yield second order accurate vector approximations ev-
erywhere. A new post processing scheme developed by the third author recovers
extra accuracy for the velocities on triangular meshes as well [15]. The postprocess-
ing method can be applied to any of the mixed method variants. The convergence
rate for the post processed flux is generally between h'-® and h!®°, depending in part
on the smoothness of the mesh refinement process. This and other related postpro-
cessing schemes are analyzed in [9], where it is shown that they recover second order
accurate velocity fields on three-lines meshes. Moreover, although the resulting ve-
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locity fields do not conserve mass exactly, a special postprocessor choice makes the
mass conservation errors extra small.

10. Conclusions. The SM has been seen to be an accurate and efficient method
for smooth meshes of triangular elements, that appears to be about twice as fast as
competing methods. On hierarchical meshes, the SM loses accuracy, but the ESM
does not. The ESM can be more efficient than the HM if the coarse elements are
sufficiently refined that the ESM requires many fewer Lagrange multiplier unknowns
than the HM. On meshes of tetrahedral elements, however, the SM loses accuracy, so
the HM should be used instead.
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