An Implementation of Balancing
Domain Decomposition

Fredrick d'Hennezel

CRPC-TR93389
March 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

An implementation of balancing domain
decomposition.

F. d’Hennezel
August 1993

1. Introduction

In this technical report, a implementation of the balancing domain decomposition
method, introduced by Mandel [1992] is presented. The result is a kernel routine
that can be used to solve linear system arising from various discretizations of elliptic
partial differential equations. It is an algebraic method in the sense that are only
needed in the input:

e The linear system restricted to the unknowns of each subdomain,

e A numbering of the interface unknowns which are by definition the unknowns
belonging to at least two subdomains, and their correspondence to the unknown
number in each subdomain.

A technique introduced by Le Tallec and Vidrascu [1993], allows to build the
coarse grid operator automatically, using only the above data, for any type of domain
shape, interpolation or type of elliptic problem (equations, systems...).

Throughout this paper the notations of Mandel [1992] are recalled in section 2. In
the section 3, is described how the preconditioner for the Schur complement matrix
is constructed automatically, using the ideas of Le Tallec & Vidrascu [1992]. The
convergence of the method depends on the type of the discretized problem, finite
element, finite difference, mixed finite element etc... In this report we describe the
implementation of the domain decomposition method. This implementation does
not change anything to the known convergence properties of the method (see Mandel
[1992] for the case of finite elements). Here we describe in the section 4 the application
of the presented implementation for the resolution of a flow problem using a mixed
finite element method.

2. Notations.

We consider the linear system of algebraic equations

(1) Az = f,

arising from a discretized elliptic, self adjoin boundary value problem on a domain .
The matrix A is assumed to be symmetric and positive definite. The unknowns in
the linear system are related to the value of the solution at some points of the domain
Q.

The domain is split into non-overlapping subdomains ..., Q. The topologic
interface is UX_, 0. At the discrete level, the interface is composed with discrete
unknowns that belong to at least two subdomains. The other unknown are the
interior unknown. We suppose that in the discretization scheme, interior unknowns
belonging to two different subdomains are not related to each other.

Let z; be the vector of unknowns corresponding to all the elements in subdomain
{};, and let N; denote the 0-1 rectangular matrix that maps the degrees of freedom z;
into global degrees of freedom z; then

Ty = N,'Tz
and
k
(2) A= E N,-A,-N,-T,
1=1
where A; is the local matrix n; X n; corresponding to subdomain ;. In each subdo-

main, z; is denoted whether Z; if it is an interior unknown, or z; if it is an interface
unknown. The local matrices A; and the 0-1 matrices N; are then split accordingly:

:t;:(f::), A,=<§;} ﬁ:), N,'=(7V-,',N,').

Remark. In order to verify (2), the coefficient of A for the interface unknowns
are split into the different A;. In the case of finite element, this is trivially done if A;
is obtain by subassembly. In other case (finite difference methods for example), this
splitting has to be define. 0O

After eliminating the ; in (1), the linear system becomes
3) Su=g,
“where S is the assembly of the Schur complements,

k .
(4) S = ZN;S;?{, Si=A4; — B,'AFIB;T.

i=1

We assume that the local matrices A; are symmetric and positive semi definite,
with the sub matrices A; non singular. Then the Schur complements S; are also
positive semi definite.

The space of interface unknowns is denoted by V, and V; is the space of interface
unknown for the subdomain ;.

The balancing domain decomposition method of Mandel [1992], refers to a par-
ticular preconditioner for a conjugate gradient algorithm applied to the system (3).

This preconditioner is define with the following local matrices:
e A, i=1,..,k

e D;, i =1,.. k which describe a decomposition of the unity on the space V' in
the following sense:

LA
(5) S N:.D;N; = 1.

=1

e Z;,i=1,...,k of size m; X n; such that

(6) Null S; C Range Z;.

3. Construction of the balancing preconditioner.
3.1 Definition of the matrices D;, : = 1,..., k.

In order to verify the equation (5), it is enough to take for D; the diagonal matrix
with diagonal element equal to the inverse of the number of subdomains in which the
unknown belongs.

The definition of the matrices D; should reflect the coefficient variation of the
elliptic problem across the interface. There are various way to take into account this
variation, see for example Dryja and Widlund [1993]. In general, the matrices D; are
defined such that they can be easily computed automatically. The experience shows
that diagonal matrix are sufficient in most of the cases.

3.2 Definition of the matrices Z;, : = 1,..., k.

The preconditioner requires to find a solution u; of the problem

(7) S;u,- = S;.

In general the matrix S; is only semi definite. The balancing preconditioner will
provide a right hand side such that the above problem has a solution.

When it has a solution, solving the problem (7) or the following matrix problem
is equivalent.

® (%)= (%)

If the matrix A; has one or several zero eigenvalues, some equations in (8) can be
suppressed in order have definite system. Once solved this reduced linear system, by
setting the solution equal to zero on the indices corresponding to the suppressed lines
of the system, we obtain a solution of (8).

After reordering the unknowns, the matrix can be written

©) a=(G 5,

where E; correspond to the reduced part of the system.

-

Then, the matrices defined by:
Z;=-E7 1G;

verify the property (6).

In the proposed implementation of the algorithm, the definition of the matrices
Z; is automatic.

A modified Crout factorization of the matrices A; is used. During the factorization,
each time a zero pivot is encountered it is substituted with a very large positive
number denoted PN.

Let us denote A; = LTO;L; the resulting factorized matrix. If the value of PN is
large enough, the solution of the linear system

A(8)-(2)

will be practically zero on the unknowns where the value PN has been substituted,
and the solution will also be a solution of (8). Furthermore, by solving the system

(11) Z,‘(Z;::):PN(/&),

we obtain

Remark. One might think that iterative method for the solution of the local
problems are more adequate. This us probably true in quite a number of case. On
the other hand domain decomposition algorithm are intended to be used with and
increasing number of subdomain and a fixed number of unknowns per subdomain.
Therefore the issue is more in the definition and the resolution of the coarse grid
problem. Here the use of direct method allows to simplify the input of the domain
decomposition solver. o

4. Application to the solution of a flow problem discretized by mixed finite
elements.

4.1. Presentation of the discrete problem

A new mixed finite element method has been developed for flow problems, which
gives a continuous approximation of the velocity field. The theoretical study of this
method, including error estimates is presented in Arbogast and Wheeler [1993]. We
consider here the case where the tensor K appearing in Darcy’s law is diagonal. The
variational formulation is the following:

(12) { (Ku,v) = (p, Vv) = /a qun YveV

Q
(Vu, w) = (fiw) YweW
In this method, the space V and W are defined on each element respectively by:

Q122® Q2,12 ® Q2,21 and Qoo

A nodal basis is chosen such that the functions of V are continuous. The degrees
of freedom for the functions of W are located at the center of the cells.

6

The linear system arising from this mixed finite element discretization is the fol-
lowing: find the couple (u, p) solution of:

o (& §)3)=(7);

In the system (12), the inner product (Kwu,v) is computed with a quadrature rule.
The points of integration are located on the degrees of freedom of the velocities, and
the weights are chosen such that the function of V' are integrated exactly. It leads of
a diagonal sub matrix M. Thus, velocity unknown u can be eliminated in (13), in
order to have an ezplicit linear system in term of the unknown p

(14) QRIM™'Qp=Q"™M g f.

Once this linear system solved, the velocity u can be computed directly using the
relation

(15) u=M"(¢g-Qp).

The matrix QTM~1Q of the linear system can be interpreted as a finite differ-
ence matrix for the pressure unknown p. The implementation of balancing domain
decomposition presented here can be used

4.2. Application of the balancing domain decomposition.

The matrix QTM~1Q has to be split in different sub matrices (QTM~1Q); corre-
sponding to different subdomains in order to solve the system using balancing domain
decomposition.

To apply the method we have to define interior unknowns and interface unknowns.
The unknowns of the linear system (14) are the pressures at the center of the cells.
In order to have interface unknowns, the interface between the subdomain will be
geometrically located “in the middle” of the cells.

The coefficients of the matrix (QTM~1Q); corresponding to interface unknowns
in the decomposition, are divided by the number of time this unknown appears in a
subdomain. Thus, like in (2), it is possible to write:

QTM™Q = iNi(QTM-lQ)iNiT’

i=1

where the matrices N; maps the local degrees of freedom into global degrees of free-
dom.

The first appendix to this report is the user’s guide for the balancing domain
decomposition code presented here. The second appendix is the user’s guide for the
mixed finite element method presented here.

REFERENCES

ARBOGAST, T.; WHEELER, M. [1993]: to appear.

DRYJA, M.; WIDLUND, O. [1993]: Schwarz method of Neumann-Neumann type
for the three-dimensional elliptic finite element problems, to appear.

MANDEL, J. [1992]: Balancing domain decomposition, to appear in Communications
on Applied Numerical Methods.

LE TALLEC, P.; VIDRASCU, M. [1993]: Méthodes de décomposition de domaine

en calcul des structures, Collogue national en calcul des structures, 11-14 mai
1993, Giens.

Appendix 1. Algebraic balancing domain decomposition: user’s guide.

1. Introduction.

Consider the linear system of algebraic equations
Az =b

arising from finite element or finite difference discretizations of a linear, elliptic, self
adjoin boundary value problem on a domain 2. The domain 2 is divided into non
overlapping subdomains y, ..., Q. Each unknown of the linear system correspond
to a function value at a point of the domain. We then have two kinds of unknowns:
the interface unknowns belonging to at least two subdomains, and the others called
interior unknowns. ' - E

Using the same notation as in Mandel [1992], the matrix A is written:

k
(16) A= NANT
=1

where A; is the local matrix for the unknowns of the subdomain ;, and N; denotes
the 0 — 1 matrix that maps the unknowns numbers of the subdomain ; to the
unknown numbers of the global system. Note that since A is written as a sum, the
coefficients for the interface unknowns have to be divided in the different A;. In the
case of finite elements, A; is directly obtained by subassembly process. In the case of
a finite difference stencil, the strategy for splitting the coefficients of A corresponding
to the interface unknowns is not clear. A straightforward choice is to divide those
coefficients by the number of time they appear in one of the local matrices (4;)%,.
It is also necessary to split the right hand side in the same way.

The domain decomposition algorithm is an iterative method that requires at each
iteration, to solve independent linear systems with respect to the local matrices A;.
Here, those linear systems are solved with a direct method; skyline storage is used
for the matrices A;.

2. Skyline storage of local matrices.

The matrix elements are stored in a vector array. Since the matrix is symmetric,
it is not necessary to store the upper triangular part. In addition, each line is stored
from the first column that has a non zero element. To “read” such a matrix from a
vector array, it is enough to know the address in that array of each diagonal element
of the matrix.

For example, let us consider the following symmetric matrix where a + denotes a
non zero element.

+
+

+ +
+

+

+ 4+ + +

+
+

+ +

+
+ 4+ 4+

Then the next figure shows the addresses of the elements that are stored in the vector
array.

1
2 3
4 5
6 7 8
9 10
11 12 13 14

To be able to read this matrix from a simple vector array of 14 elements, one needs
the following array of indices:

arr(0) =0, arr(l) =1, arr(2) =3, arr(3) =5,

arr(4) = 8, arr(5) =10, arr(6) = 14.

Note that arr(0) is always equal to zero and that arr(s) —arr(i —1) gives the number
of elements stored on the line z.

This defines the skyline storage of the symmetric matrix. With this type of storage,
it is possible to perform a Choleski factorization or a Crout factorization. A C++ class
named profilMatriz was implemented for the skyline storage of symmetric matrix.

Remark. The efficiency of the Choleski or Crout factorization using a skyline storage
is highly dependent on the average number of element stored on each line. This
number is usually called the bandwidth. Thus, it is the task of the user to choose a
numbering for the unknowns on the local problems in such a way that this bandwidth
is as small as possible. For example in the case of a logically rectangular grid, it is
better to number first the direction having less grid blocks.

3. Interface data structure.

The balancing domain decomposition method is a preconditioned conjugate gra-
dient method applied to the Schur complement matrix S of A. Let S; be the Schur
complement matrix of the local matrix A;. As in the equation (3) of Mandel [1992],

10

k
(17) S =Y N.5N;,
i=1
where N; denotes the 0 — 1 matrix that maps the local interface unknowns numbers
to the global interface unknown numbers.

Then, to determine the action of S in a general case, we need to define three
different sets of unknowns:

e The set of unknowns for S, numbered from one to the global number of interface
unknowns.

e The set of unknowns for S;, numbered independently in each subdomain from
one to the local number of interface unknowns.

e The set of unknowns of A;, numbered independently on each subdomain, from
one to the total number of local unknowns.

The matrices A; are assembled on independent meshes with some given numbering
of the unknowns (as was said before a good numbering will reduce the bandwidth of
the local matrices). Then, to apply the balancing domain decomposition algorithm,
we need to define the numbering for S and S;. It is done in the following way.

For each subdomain ;, the C++ class local of type bdrylntfc is defined which gives:

e The global number local.nbInt fcGloc of interface unknowns for S.
e The local number local.nbInt fcLoc of interface unknowns for S;.

e For : =1 to local.nbInt fcLoc

Its number in the local mesh local.sdom(z), which is the unknown number
for the local matrix A;.

Its number on the interface local.intfc(z), which is the unknown number
for the global Schur complement S.

This class is initialized in the C++ routine recosd. This routine works for logically
rectangular grids.

Remark. The numbering for A; and S; are independent from one subdomain to
another. Therefore, storing vectors corresponding to those matrices on different pro-
cessors of a distributed memory machine is easy. Vectors corresponding to S are
define on the interface; there is no natural way to partition them. In the actual pro-
gram a copy of such a vector is stored for each subdomain. This type of storage is
efficient with a “reasonable” number of subdomains.

4. Input and output parameters for DD _algorithm.

11

DD _algorithm is the subroutine of a node program running under PVM, which solves
a linear system using balancing domain decomposition.

e The class pll of type pllinfo contains the information for the message passing calls
in DD_algorithm. This parameter does not appear explicitly in the argument
list of DD_algorithm; it is define as an external and has to be initialized before
DD _algorithm is called. pll, contains the following information.

The number procnb of processes running under the current application.
The number tasknb € {0, ..., procnb — 1} of the current process.

The array of integer tids, containing the tid numbers of the different pro-
cesses. Those number are affected by PVM in the master program.

The maximum number of neighbor maznbr for all the subdomains.

The array of integer mynbr of size maznbr which contains the number of the
process on which is the designated neighbor. If the designated neighbor does
not exist mynbr is equal to -1. In the case of a logically rectangular grid in 3D,
maznbr =26.

e The class MmatriZ eumann Of type profilMatriz (see §2) contains in the input, the
matrix restricted to the subdomain corresponding to the current process.

o The class local of type bdryIntfc (see §3) contains in the input the data structure
describing the numbering for S;, A; and S.

o The class p of type doubleArray contains in the input the right hand side of the
linear system restricted to the subdomain corresponding to the current process.
In the output, it gives the solution of the linear system on the subdomain
corresponding to the current process. The solution on the interface unknowns
is the same on every subdomains.

12

Appendix 2. Mixed finite element method for continuous approxima-
tion of the velocity field: User’s Guide.

1. Introduction

A new mixed finite element method has been developed for flow problems, which
gives a continuous approximation of the velocity field. We consider here the case
where the tensor appearing in Darcy’s law is diagonal. The linear system arising
from this mixed finite element discretization is the following: find the couple (u,p)
solution of:

s (a 9)(5)=(1):

Due to the quadrature rule used in the scalar product of the velocities, the submatrix
M is diagonal. Then, we can easily eliminate the velocity unknown u in (1) and
compute the matrix of the linear system in term of the unknown p:

(19) QIM™IQp=Q™M ¢~ f.

Once this linear system solved, the velocity u can be computed algebraically:

(20) u=M"(¢g-Qp).

The implementation has been done for rectangular meshes in three dimensions.
It consists in two main routines:

e assMatriz, which assemble the matrix and the right hand side of the linear
system (2).

o ezp Vel, which compute the velocities explicitly from the pressure solution of (2)
using (3).

2. Global numbering of the velocity unknowns.

On a rectangular mesh, it is very simple to have a numbering of the cells. Also,
the pressure unknowns that are located at the center of each cells can have the same
numbering.

The velocity unknowns are located on the vertices of the cells, on the edges of the
cells and on the faces of the cells. In order to be able to distinguish those degrees of
freedom, we need to number them locally on each element and globally on the mesh.

The local numbering is the same on every elements. The global numbering is
defined through a map, depending on the number of the cell and the local number in
that cell.

On a given rectangular mesh, we now describe this global numbering. For vertices,
edges or faces we always count the degrees of freedom in the order of increasing
coordinates.

13

The vertex unknowns are numbered first

The x component of the velocity field on the vertices
The y component of the velocity field on the vertices

The z component of the velocity field on the vertices

Then the unknowns on the edges parallel to the x axis

The y component of the velocity field of these edges
The z component of the velocity field of these edges

Then the unknowns on the edges parallel to the y axis
The x component of the velocity field of these edges
The z component of the velocity field of these edges

e Then the unknowns on the a'edges parallel to the z axis
The x component of the velocity field of these edges
The y component of the velocity field of these edges

e Then the unknowns on the faces orthogonal to the x axis
o Then the unknowns on the faces orthogonal to the y axis

e Then the unknowns on the faces orthogonal to the z axis

As said above, the local numbering of the velocity unknowns is the same on every
element; it is equal to the global numbering of a mesh with a single element.

The map defining the global numbering from the cell number and the local number
is computed once for all by the routine contVel::initIndez. It is stored in the member
array indez.

3. The input-output parameter for assMatriz.

Here are described the input parameters of the routine assMatriz to be used
without domain decomposition.
mesh of type fdgrid contains three arrays for the vertex coordinates of the cells, and
three arrays for the sizes of the cells in each direction.

tensor of type cont Vel contains the values of the diagonal tensor used in the assembly
of the matrix M. Due to the type of quadrature rule used in the variational formula-
tion, the tensor value is needed only at the location of the velocity degrees of freedom.
For this reason, the type of tensor is the same than for the velocities. Consequently,
the user has to specify the value of the tensor using the global numbering initialized
in cont Vel::initIndez (see §2).

14

lambda of type bdryVal gives for each of the six faces of the rectangular domain
the type of boundary condition. It can be Neumann lambda(z) = 0, or Dirichlet
lambda(z) = 1. ¢ = 1 and 2 denote the faces orthogonal to the z axis of coordinates,
¢ = 3 and 4 denote the faces orthogonal to the y axis of coordinates and : = 5 and 6
denote the faces orthogonal to the z axis of coordinates.

Ibdval of type cont Vel contains the values for the Dirichlet or/and the Neumann bound-
ary conditions and the map for the global numbering of the velocities (see §2). To
initialize the member array lbdval.indez, the user has only to type the command lbd-
val.initIndez() after declaring lbdval. The value of the boundary conditions, Dirichlet
or Neumann, have to be given at the location of the velocity degrees of freedom that
are on the boundary, with respect to this numbering.

p of type cArray3d contains on the output, the right hand side of the linear system
in term of pressure unknowns.

assMatriz is a function returning an object of type profilMatriz, which contains the
matrix for a the linear system (2). It is a skyline storage (see d’Hennezel [1993],52).
For example, calling LtL(profilMatriz &) performs a Choleski factorization of the
matrix. Then, calling invLtL(profilMatriz &, doubleArray &) with the factorized
matrix and the right hand side p gives in p the solution of the linear system.

5. The input-output parameter for ezp Vel.

For sake of clarity, it has been chosen that ezp Vel and assMatriz would be inde-
pendent subroutines. Therefore the matrices M and @ are assembled again. ezp Vel
has a void return type, but has the same list of arguments than assMatriz.

mesh of type fdgrid. In input; the same than for assMatriz.
tensor of type contVel. In input; the same than for assMatriz.
lambda of type bdryVal. In input; the same than for assMatriz.

lbdval of type contVel. In input; the same than for assMatriz. In output, it contains
the velocity field computed with the algebraic equation (3).

p of type cArray3d. In input; contains the pressure solution of the linear system (2).

7. Using assMatriz and ezp Vel with the domain decomposition solver
DD_algorithm.

When DD _algorithm (see d’Hennezel [1993]) is used, assMatriz and ezp Vel are

15

used as the subroutines of a node program for each subdomain (even though there is
no message passing in either of those two subroutines).

The unknowns of the linear system (2) are the pressures at the center of the
cells. In other words, the interface unknowns which appear at least in two different
subdomains, are in the middle of cells. Therefore those cells appear in as many
subdomains as the interface unknowns they contain.

For this reason, using assMatriz in a domain decomposition program, requires a
definition of mesh with one layer of cells overlapping along the interface.

The input parameter lambda of type bdryVal, contains the boundary condition
for the six faces of the subdomain. In the case of domain decomposition, faces of
the subdomain can be the interface with another subdomain. In that case, we have
(lambda(i) = 3.

Using lambda, the subroutine Scale Tensor called in assMatriz will modify the value
of tensor on the boundary of the subdomain that is on the interface. In that way,
when the local matrices for the subdomains are added to form the global matrix; the
same interface coefficient is not going to be counted several times.

The solution of the linear system p is identical from one subdomain to another for
the same interface unknown. Using this p as an input parameter in ezp Vel with the
other argument identical as in assMatriz, will give in the output lbdVal, the velocity
field. Along the interface, the velocity field is not computed on degrees of freedom of
the boundary. But since there is an overlap of the cells on the interface, those missing
velocities are computed inside the neighbor subdomain.

The computation in assMatriz and ezp Vel are completely independent from one
subdomain to another. Therefore, not message passing call is done either in assMatriz
or ezp Vel.

All the routines for assMatriz, ezp Vel and DD_algorithm are in:
hennezel /pdom/bdd

The program slave.C, is a node program using PVM. It uses DD_algorithm with
assMatriz and ezpVel. It is a simple example, where the tensor is constant and the
global domain is a cube of side one. The user gives to parameters; the number of cells
in each direction and the decomposition in each direction. The boundary conditions

and the right hand side are specified “in line” in the program. Makefile compiles all
~ the routines needed for the executable slave. '

The host program calling under PVM the node program slave is master.C.

16

