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Abstract

We present in this paper a comparison of the dispersion properties for several finite-
difference approximations of the acoustic wave equation. We investigate the compact
and staggered schemes of fourth order accuracy in space and of second order or fourth
order accuracy in time. We derive the computational cost of the simulation implied
by a precision criterion on the numerical simulation (maximum allowed error in phase
or group velocity). We conclude that for moderate accuracy the staggered scheme of
second order in time is more efficient, whereas for very precise simulation the compact
scheme of fourth order in time is a better choice. The comparison increasingly favors
the lower order staggered scheme as the dimension increases. In three dimensional
simulation, the cost of extremely precise simulation with any of the schemes is very
large, whereas for simulation of moderate precision the staggered scheme is the least

expensive.

*Department of Computational & Applied Mathematics, Rice University, Houston, Texas, 77251



INTRODUCTION

Asymptotic expansions and formulas like geometric optics or Kirchhoff integral do not
contain all reflected, transmitted and refracted waves. The acoustic wave equation on the
contrary takes all these phenomena into account. So the numerical methods used to inte-
grate this equation are of great interest for understanding the complex interactions of the
wave phenomena. To be of any use such methods need to be accurate, and in particular
must overcome or at least control very well the numerical artifacts they introduce.

A well known and major artifact is the numerical dispersion. This phenomenon makes
the waves’velocity frequency dependent. After a certain time it is therefore impossible to
recognize the shape of a traveling pulse, and to interpret on a seismogram for instance,
the presence of this “damaged” signal.

To overcome this essential drawback, the current practice consists of plotting the dis-
persion curves of the given numerical method and deriving from those curves a “rule of
thumb” for the number of points per wavelength and the number of points per period one
needs to take to have a small error (cf (1)).

A natural idea is to use very accurate methods so that dispersion errors will intrinsicly be
very small. For instance if one uses discrete Fourier transforms then there is no numerical
dispersion (cf (2), (3), (4), (5))- but spectral methods suffer from other drawbacks which
we will not consider here.

The finite difference method is the most widely used numerical method for wave prop-
agation problems in seismology. The higher the order for the finite difference schemes,
the less dispersion is experienced by the wave but the more floating point operations are
required.

So the question we want to address in this paper is the following: “is higher order bet-
ter 7”. Our measure of quality is the computational cost of the numerical scheme, for a
prescribed dispersion level.

Our approach is similar to the one developed in (6), (7) and (8) for staggered schemes,

introduced for elastic waves in (10).



A good way to control the numerical dispersion is to use the phase and group velocities to
measure the precision of the simulation. Given an a priori precision on the phase or group
velocity, we show how to choose the number of points per wavelength and the number of
points per period, to minimize the number of floating point operations required for that
a priori precision.

The two most widely used “families” of finite difference schemes are the compact schemes
(cf (11) (12) (13) and (14)), and the staggered schemes (cf (6) and (8)). So we compare
for the same precision, the cost of the different schemes. We consider among these two
families of schemes, those which have either second or fourth order accuracy in time and
fourth order accuracy in space. This limitation on the order of the spatial derivatives is a
consequence of our previous work (cf (8)). We showed that for staggered schemes, higher

order were not better.
PRECISION CRITERIA AND COMPUTATIONAL COST

To compare the different numerical schemes, we demand that they all fulfill the same
precision requirements. We consider phase and group velocity errors. To simplify the
computations of the different precision criteria, we assume that the domain where the wave
propagates is a square (A X A) or a cube (A X A X A), and that the time of propagation
Tmaz is equal to the time of a round trip to the bottom of the model. So we have :

(1) Tma:c = T

where c is the velocity of the wave in this homogeneous medium.

An non-dimensional way to measure the time of propagation is to use the shortest period
as unit. We use a band limited wavelet of maximal frequency F,4.; so the shortest period
is 1/ Fjnoz. For instance for a Ricker wavelet of central frequency Fy, Finaz ~ 3.Fp. So let
J be the number of shortest period and Ay, the shortest wavelength in the medium, we
can write :

/\min
(2) Traz = J.=2




Therefore we have A = J/2.Apmin. So J appears as a measure of the size of the modeling
problem we are interested in. It measures the number of shortest wavelength propagated

in the medium.
Phase Velocity Criterion

We demand that the numerical solution be such that at the end of the simulation, the
phase shift between the exact wave (with phase velocity c) and the numerical wave (with
phase velocity c,(k)) be less than a fraction of the shortest wavelength. Put in equation

we impose that :

/\min
(3) |C¢(k) - cl'Tmaa: <

- n

where n is an integer. Using (2) we can write (3) as follows :

J. /\min < ’\min
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IA

where E, is the normalised phase error.

We will use three instances for the precision on the phase velocity. The quarter of a
wavelength is the threshold at which geophysicists are able to separate two arrivals on a
seismogramm. We consider a first criterion corresponding to n = 2, that is a shift of a half
wavelength. Then we consider the threshold in question corresponding to n = 4, that is a
shift of a quarter of wavelength. And finaly we consider a shift of one sixth of a wavelength
for n = 6. To relate those criteria to a travel time arrival on a seismogramm let us take
the example of a Ricker wavelet with central frequency 30 Hz. Then the shortest period
is 11.1 ms. So for n = 2 the shift in time between the two arrivals is 5.55 ms, for n = 4 it
is 2.77 ms and for n = 6, 1.85 ms.

We will also use a model of one hundred wavelength (J = 100), which is a typical size in

geophysical applications.



Group Velocity Criterion

It is well known that the group velocity governs the propagation of wave packets, that
is the propagation of “energy” (cf (15) and (16)). It is therefore important to control the
numerical effects on the group velocity.

To do so we impose, like for the phase velocity, that the group shift between the exact

and numerical wave be less than a portion of the shortest wavelength. So we impose

A in
legr(k) — |- Thmaz < —

n
<~
J-’\min ’\mi'n
—cl. <
|egr(k) — ¢ c S n
(=
cgr(k) —c 1
= et < _
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where E,, is the normalised group error. Again in this case we will set J = 100 and

n=2,4,6.
The Computational Cost

The number of floating points operations necessary to complete the simulation defines
our computational cost. It is possible to take as a measure of efficency the CPU time,
but this aspect of the problem involves dealing with different architectures of machines,
considering vectorization, parallelisation problems etc (cf (17) and (18)). Our goal in this
paper is limited to compare the numerical methods, and not their machine dependent
implementations.

So the computational cost of a simulation will be given by the product of the number of
points in space (NZ) (because the domain considered is a square d = 2 or a cube d = 3
and we choose for simplicity Az = Ay = Az) by the number of time steps (V;) by the
number of operations per grid point and time step (/N,,) for the given numerical method.

We can then write :

(4) Cost = N,p.(Ng). N,




Introducing the two classical non-dimensional parameters, Ny = Apin/Az number of
points per shortest wavelength and N, = Amin/(c.At) number of points per shortest

period we can write :

A Ny . o Ny
No = 5= = Ay = Jdmin/25 - = 5N
Ny = Tpootrt = L2min Mo 7y
c ’\min

so finally we can write the cost in dimension d as follows :

Jat+t
(5) Cost = —ﬁ—.No,,.Np.Nf
With this definition of the cost we can state more clearly the question we want to answer.
Given precision requirements on the phase and group velocities, what scheme is the most
economical ?. A related question is Does it make sense, in that context, to use high order

schemes 2.
SCHEMES OF SECOND ORDER ACCURACY IN TIME

As mentioned in the introduction, we only consider schemes of fourth order accuracy
in space. We concentrate on the two most widely used (2-4) schemes, the (2-4) com-
pact scheme (cf (13)) and the (2-4) staggered scheme (cf (8)). Those schemes are used
to integrate the acoustic wave equation which is a model for the propagation of small
disturbances in an acoustic medium. This kind of medium is caracterized by its density
p and its bulk modulus K, which are functions of the space coordinates z and y. The
acoustic wave equation links the pressure field u to the density and the bulk modulus in
the medium as follows: )

6) %%t—;‘ _v. (%Vu) =0

All the difficulty for the numerical treatment of this equation lies in the treatment of the

spatial operator. One has to consider the fact that the equation contains derivatives of
19u

the possibly non differentiable function 352 for instance. The two kinds of schemes we



treat, deal with that potential problem in two different ways. If one considers the constant
density case, then the spatial operator is the Laplacian and numerically the problem is
much simpler and much less interesting. Stability issues disappear and with them the
subtleties of the numerical treatment of the spatial operator V.(%Vu).

Physically speaking the constant density case is of poor interest as well since, for instance

it does not take into account amplitude versus offset (AVO) effects.
The Compact Schemes

For the homogeneous case when the parameters K and p are constant it is possible to
find an approximation of the spatial operator (the Laplacian) on nine points in two dimen-
sions (on thirteen points in three dimensions). The compact scheme technique consists in
generalizing that idea to the heterogeneous case, that is to find a nine (or thirteen in 3D)
points approximation of the operator V.( %Vu).

We will introduce the scheme in the context of a two dimensional propagation problem.
The three dimensional case can easily be deduce from it, and we will just give the results
for the three dimensional case.

For the numerical scheme, the functions K and p are discretized by the following formulae

1 /1’|+1.J /‘”' J+1 d d
= z dy
Kit1/2,541/2 Az? Jy i 5

1 1 Titl,; [Tij+1
—_— = = / / dz dy
Pit1/2,541/2 Az Tij Ti ( )

To be able to stay on nine points, one needs to use extra coefficients computed from the

given coefficients above. Those extra coefficients are “averages” of the given functions over

neighbouring cells caracterised by two parameters 3 and A. Setting

1 1 1 1 1 1
— = + + + +(1-48)—
Ki; ﬂ(Ki+1.j Ki1;  Kijn Ki,j-l) ( ﬂ)Ki,j
1 1 1

= = (1-2)) + A( +
Pi+1/2,j Pi+1/2, Pi+3/2,j  Pi-1/2,j



1 1 1
! +

- = (1-2)) + X(
Pij+1/2 Pij+1/2 Pij+3/2  Pij=1/2
with

1o _ 1t .1

Pi+1/2, 2 pit1/2,j41/2  Pi+1/2,j-1/2
1o _ 1t .

Pii+1/2 2 pis1/2,541/2  Pi-1/2,j+1/2
11 1 1 1ot
Pi,j 4 piv1/2,+1/2  Pit1/2,-1/2  Pi-1/2,+1/2  Pi=1/2,j-1/2
11 1 1 1,
K 4 Kiprpgre Kivppg-z Kicypgnpe o Kicypg-aye

an iteration of the (2-4) compact scheme can be written as follows:

K;;At? [4 1 1
1 -1 )
uff' = 2+l + [g { . (w215 - u?;) - PP (“?,j —uly)

+ ﬁi,ji.l/z ('U:?;j+1 - 'U::';J) - Edi—l/; (UI:J - u?,j-l)}
- % {Pi-:l,j (u?+2,j - u?.j) - Pi—ll,j (u?’j - u?—2,j)

- (u}fj+2 - "ﬁj) - Pi,:—l (“3:‘ - “?.j—z) }]

Pi,j+1
The organisation of the computation can be done in two different ways according to the
memory space we have at our disposal. If one computes beforehand and store the extra
coefficients necessary to the iteration of the scheme, in two dimensional arrays (we need
four of them, I?,-,j, Pi+1/2,j» Pij+1/2> Pij), the (2-4) compact scheme takes 30 operations
to iterate. Therefore in our cost analysis we have N,, = 30, in 2D. For the 3D case we

have to add 12 more operations, so N,, = 42, in 3D. The stability condition states that

8



the (2-4) compact scheme will be stable if:

Cmaz- At < V3

Az S oA ~ 0.61 n2D
(7)
Cmaz- At .
T S 0.5 3D

where ¢4z is the maximum of the velocities in the medium (¢ = \/K/p) and X is one of

the parameters used in the computation of the extra coefficients (cf (19)).
The Staggered Schemes

The approach for the staggered schemes is totally different. It was driven by stability and
energy conservation considerations. The idea is to treat the spatial differential operator
as the composition of two first order operators. For the homogeneous case (when the
spatial operator is the Laplacian) we have a 13 points approximation in 2D and a 19
points approximation in 3D. For the heterogeneous case the extension is straightforward
since we have built this scheme to respect the variational form of the continuous spatial
operator.

More precisely, let us consider the 2D case. We introduce the fourth order accurate finite-

difference approximation A; and Ay of the first order derivatives % and %, defined by

Avonn o = (Uit — i) _ 1 (g2 = Uio1
s = g\T Az )T u\" Az

A _ 9 (i — Ui 1 (U402 = Uij1
vhiti2 = g\T Az ) T2\~ Az

To approximate the spatial operator V.(%Vu) = ;—z(%g—:) + %(%g—’;) we use the finite

difference operator A;, A, and their transposes as follows :
v.(ive ~ - (‘A Ca)+a,ta )) .
. - T
p p St
We can now write the iteration step of that scheme :
iJ

1 1
™t = 2ui; + u}";l + K.',jAt2 (tAz(;A,,) + tAy(;Ay)> u;

9



In this case we do not need extra coefficients which would translate into extra arrays in the
computation. Factorizing by Az we see that computing Azity/2,; TEQUITES 5 operations.
Therefore an iteration of the scheme takes 28 operations, so Nop = 28.

This shows that the number of operations per node N,y is not proportional to the number
of points used by the scheme. Indeed on 13 points we have 28 operations per node, and
the compact scheme on 9 points, 30 operations per node (if we store the coefficients).
The generalisation of this scheme to three dimensional problems is straightforward. We
need to add ‘Az(%Az) which takes 12 operations. So in 3D, we have N, = 40. Again
this does not require extra coefficients (arrays to be stored), whereas the compact scheme
technique does. This can be a serious drawback of this last appraoch since in three
dimensions, the issue of storage and also the issue of fast access to the memory, have to
be considered.

The stability condition for the (2-4) staggered scheme is given by

Cma.:z:-At Pmin 6 Pmin .
—_— < S— 0.606_ — m?2D
Az - V Pmaz 7.\/5 Pmazx

Cmaz.At pmgn 6 Pmm. .
—_ < 1/ —_— 0.495.‘/—- in 3D
A(D - Pmaz 7.‘\/3- Pmaz

where ¢mqz is the maximum of the wave velocities, pmi» the minimum of the the density

(8)

and pmes its maximum. When the medium has a sharp density contrast, the stability
condition will be accordingly less than its maximum 0.606 or 0.495. However as we will
see in the sequel, the stability condition has only an indicative role. We will have to choose
p = c.At/Az much less than the maximum allowed by the stability condition to fulfill the

precision criteria we have imposed.
Dispersion Analysis and Computational Cost

Many papers analysed the numerical errors for wave propagation problems in homoge-
neous media, where precisely dispersion occurs. This is due to the fact that a lot less is

known about the numerical errors in heterogeneous media in general.
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It is possible to analyze the errors on reflection and transmission coefficients for two lay-
ers media (cf (21), (13)), and also to quantify the error for very rapidly varying medium
(cf (9)). Even in heterogeneous media, where other phenomena than dispersion occur,
numerical dispersion is a major error contributor. Therefore the control of dispersion is
crucial to the numerical simulation.

With the precision criteria we have introduced on the phase and group velocities, it is
possible to deduce the number of points per wavelength and the number of points per
period one needs to choose to fulfill those precision requirements. We will explain the
method in 2D and give the results for the 3D case.

The dispersion relation links the time pulsation w to the wave vector k. In two dimensions
we can use polar coordinates for k£ and caracterize it by its norm k = ||k|| and its direction

with the z-axis 6. For the (2-4) compact scheme the dispersion relation is given by :

w(k,8) = A2 arcsin ( \/f2 + ]+ fz +£) )
(9)

cos(0)) fy = sm( sm(G))

fr = sm(

For the staggered schemes the djspersmn relation is given by :

(

w(k,9)

Ait arcsin (%t\/ a%( k'?’” cos(8)) + g*( k’QA” cos(8))) )

(10) X

o) = gsin('v)—élzsin(&v)

Error on the phase velocity
Using the classical non-dimensional variables p = ¢.At/Az (Courant parameter), H =
Az /) (inverse of number of points per wavelength) and the definition of the phase velocity

we can write the normalised phase error E, as follows for the compact scheme :

_ 1 . 0] 2 1 4 4
E, = TpH arcsin (p.\/fz + 2+ 3 (fz + fy) -

(11)

fz sin(w.H. cos(9)) fy = sin(x.H.sin(0))

11



and for the staggered scheme:

( 1
- ; [a2 + g2 ) —
E, = — arcsin (p. g%+ g2) 1

(12) | 9= = %sin(w.H. cos(8)) — 21—4 sin(3.7.H. cos(f))

gy = % sin(w.H.sin(6)) — 21—4 sin(3.7.H.sin(6))

u
The precision on the phase error is proportional to the inverse of the number of wavelength
propagated in the medium (J). For a typical geophysical application, J is of the order
of 100. This compels E, to be in a neighborhood of 0. Since E,(H = 0) = 0 we can
use a Taylor expansion about H = 0 to gain more insight in the behaviour of E, in that

interesting region. We have for the (2-4) compact scheme:

m2p?H? 61

E, = TE— — 55(cos®(0) +sin®(8))x*H* + O(H")

and for the (2-4) staggered scheme:

7r2p2H2

B, = —

= 2 (cos?(0) +sin*(O))r* H* + O(H®)

This shows that both schemes are second order in time and fourth order in space (since
p.H is proportional to At and H to Az). It is clear with this calculation that the time
error has a positive contribution whereas the space error has a negative contribution to
the phase error.

We set the error criterion to a quarter of a wavelength (n = 4) for one hundred wavelength
(J = 100). So we must have for all direction of propagation 6, |E,| < 1/400 = 2.5.1072.
So according to the preceeding calculation, we have to choose p small enough so that
E, < 2.51073. Of course we will choose the biggest p in this category. This will give the
biggest time step allowed by the precision criterion. Then we use the dispersion curve to

find the maximum value of H admissible, for all directions 6 to fulfill E, > —2.5107°.

12
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FiG 1 : The normalised phase error for different values of a propagation angle § with the

biggest courant parameter p = C.At/h respecting the constraint E, < 2.5 10~3 for the

compact scheme (up) and the staggered scheme (down).

The results in 2D are the following
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Precision Compact Staggered
Scheme Scheme

n=2 | p=0.345 N,=1428 || p=0334 N, = 14.25
H = 0.203 Ny =4.93 H =0.210 Ny, =4.76

n=4 p = 0.294 N, =20 p = 0.282 N, =20.15
H =0.170 Ny =5.88 H =0.176 N) =5.68

n=6 | p=0.266 N,=2462 | p=0256 N, = 24.64
H = 0.152 Ny =6.54 H =0.158 Ny =6.30

This means that for a precision of a quarter of wavelength for instance, we must take at

least 20 points per period and 5.88 points per wavelength for the compact scheme, and

20.15 points per period and 5.68 points per wavelength for the staggered scheme.

Using (5) we can compute the cost of the two methods.

Cost | Compact Scheme | Staggered Scheme | Staggered/Compact
Nop =30 Nop =28

n=2 2.60.10° 2.26.10° 86.82 %

n=4 5.18.10° 4.55.10° 87.73 %

n=6 7.89.101° 6.86.101° 86.94 %

So for a fized precision of the normalised phase error the (2-4) staggered scheme will be

roughly 13% cheaper than the (2-4) compact scheme, 2D.

For the 3D case, we have
Precision Compact Staggered
Scheme Scheme

n=2 | p=0.285 N,=18.69 | p=0.334 N, = 18.90
H =0.187 Ny =5.32 H =0.194 Ny =5.14

n=4 | p=0.240 N,=2659 || p=0.231 N, = 26.54
H = 0.156 Ny =6.38 H = 0.162 Ny =6.14

n==6 p = 0.217 N, = 32.63 p = 0.209 N, = 32.659
H =0.141 Ny =17.09 H = 0.146 Ny = 6.82

14




The comparison of the cost gives :

Cost | Compact Scheme | Staggered Scheme | Staggered/ Compa.ct‘
Nop = 42 Ny, =40

n=2 1.48.1012 1.29.1012 86.97 %

n=4 3.62.102 3.08.10'2 84.96 %

n=6 6.11.102 5.19.10'2 84.93 %

Error on the group velocity

From the dispersion relations (9) and (10), we can compute the group velocities by taking

the derivative of w with respect to k. We have for the compact scheme :

(13)

(14)

E,.

fe

fe

and for the staggered scheme as follows :

(

\

o (s e g ) (B 54324 )

= sin(7.H. cos(6))

cos(8). cos(w.H. cos(0))

fy = sin(7.H.sin(8))

fy

Egr - 929z + Gy9y

V17 (2 +))JE + )

sin(8). cos(w.H.sin(f))

gz = -:— sin(w.H. cos(8)) — % sin(3.7.H. cos(9))

9 = 4 sin(w.H.sin(8)) — -21—4 sin(3.7.H. sin(6))

8

gz = cos(0) (-g- sin(w.H. cos(8)) — %sin(3.7r.H. cos(0))>

gy = sin(0) (-:- sin(w.H.sin(8)) — -;-sin(3.7r.H. sin(0)))

The results in 2D are the following.

15
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Precision Compact Staggered
Scheme Scheme
n=2 p = 0.302 N, = 24.54 p=0.290 N, = 24.68
H =0.135 Ny =17.41 H =0.139 N) = 7.158
n=4 p = 0.255 N, = 34.86 p = 0.245 N, = 34.88
H =0.112 Ny = 8.89 H =0.117 Ny =8.55
n==6 p=0.231 N, = 42.69 p = 0.222 N, =42.74
H =0.101 N) =9.86 H =0.105 Ny =948
Using (5) we can compute the cost of the two methods.
Cost | Compact Scheme | Staggered Scheme | Staggered/Compact
Nop =30 Nop =28
n=2 10.12.10° 8.85.10° 87.49 %
n=4 20.66.10° 17.85.10° 86.40 %
n=6 31.14.10° 26.82.10° 86.13 %

For a fized precision on the normalised group error, the (2-4) staggered scheme in 2D will

be roughly 13% cheaper than the (2-4) compact scheme.

The results in 3D are the following.

Precision Compact Staggered
Scheme Scheme

n=2 p = 0.246 N, = 32.72 p = 0.237 N, = 32.70
H =10.124 Ny =8.05 H =0.129 Ny =17.75

n=4 | p=0.209 N, = 46.11 p = 0.200 N, = 46.25
H =0.104 Ny = 9.61 H = 0.108 Ny, =925

n==6 p=0.188 N, = 56.58 p = 0.181 N, = 56.72
H =0.093 Ny =10.67 H =0.097 Ny =10.26

Using (5) we can compute the cost of the two methods.

16




Cost | Compact Scheme | Staggered Scheme | Staggered/Compact
Nop =42 Nop =40

n=2 8.96.10'2 7.61.1012 84.93 %

n=4 21.52.10"2 18.30.10'2 85.05 %

n=6 36.10.10"2 30.68.1012 86.04 %

. Remarks

o The preceeding analysis shows that the (2-4) compact scheme approximate better
the time derivatives, since in the two cases (phase and group errors) it required less
points per period than the (2-4) staggered scheme. Conversely, the (2-4) staggered

scheme is better for the spatial approximation, since for a fixed error level it required

less points per wavelength.

e The 3D case implies an increase of points per period and points per wavelength,
compared to the 2D case. This is not surprising since the third dimension implies
that in the direction of the diagonal of the cube (the worst direction in 3D), one has

fewer points per wavelength than in the worst 2D direction (diagonal of the square).

SCHEMES OF FOURTH ORDER ACCURACY IN TIME

The fourth order in time schemes are obtained by a Lax-Wendroff correction (cf (23)) of
the wave equation, which is often called the modified equation approach (cf (14) and (22)).
It consists in decreasing the truncation error of the finite difference in time, by replacing
the time derivatives of order higher than two, by their spatial equivalent using the wave

equation. The idea can be simply explained in homogeneous media. The truncation error

of the finite-difference in time is :

2 ntl _9,n. n—1
O’y _ U 2ui; + U

At? 9%u

ot?

At?

+

12 ot4

+ 0(At®)

Using the wave equation which in this case of homogeneous medium is

%u 20%u
ot? 0z?
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we can replace the fourth order derivative in time by

*u 40%u
_— = T —
ot ozt

With this correction we therefore approximate at the discrete level the modified equation
10%u _ 0% 2. At? 9%u

292 ~ 9z 12 Ox?

An important remark for the numerical method comes from the fact that the correction

term needs only be approximated at the second order in space, since it is multiplied by

At? and At2.0(Az?) = O(At*) = O(Az*) by the stability condition.
The Compact Schemes
For the fourth order in time case, an iteration of the scheme can be written as follows

K;;At? [4 1 1
'u,?"!'l = 2ut. + u'."_.'l + "‘7' < = ul . — u? - — u:" Lyt
" 1,J ,J h2 3 | Bi /2.5 ( 1+1. ,J) Pi-1/2,j ( %] 3 1,1)

1 , 1
n n n
+ (ui,j+l - ui,j) — ~__- (u‘,J - ui,j—l)

Pij+1/2 Pij—1/2
1 1 n n 1 /., .
-6 {PH—LJ' (ui“’j B ui’j) " picti (ui’j - )

T (ui,j+2 - u,-,j) T (“e,j - "«',j-z) - 15 Brui;

with By, is a second order approximation of the operator B defined by

o = 59 (4 (v, (b))
p p
The best way to compute By, is to keep it under its factorized form. We will have a clear

understanding of the process if we explain it in the “continuous” operator B. We can

write :

f = KV. (%Vu)

Bu

Kv. (%v f)
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To compute Bj, we use the same approach and the following second order approximation.

Ki; 1 1
f = (s - ot - )

Pit1/2,; Pi-1/2,j

+

1 T n n
AU; - ——(y = U,
<p1,J+l/2 ( ’]+1 .7) p"’J_ / ( 1,7—1 11]))]

K; 1 n 1
Bh'Uz:J = sz. [(p, 12, ( 41,7 — fi,j)- pi—l/Zj ( 1,7 1— ,J))

<P1,J+1/ (f,]+l ,_1) pt]- (f,] 1~ ))}

In this calculation we have implicitly assumed that we can store the temporary variable
f. Then the correction part By takes 24 operations per node so that the (4-4) compact
scheme actually takes No, = 30 + 24 = 54 operations per node.

In 3D we have to add, 12 operations for the computations of B, and the number of
operations for the (2-4) part of the scheme is 42, as we have seen in the previous section.

So in 3D, we have N,, = 42 + 24 + 12 = 78. The stability conditions are given by :

Cmag-At \/5 3
—_ < — ~ 0.
- < 5 0.707 in 2D
(15)
Crmaz-At < ﬁ ~ 0.577 =n 3D
Az 3

The Staggered Schemes

For the staggered scheme the correction term is straightforward to integrate. We define

1 1 1
Vh.(;Vh’U,) = - (tAz(;;A:,) + tAy(;Ay)) u
Then the modified scheme is given by :
A
u}‘jl 2ul; + u""l + V(= th)" + K. Vh ( —VrKVh. (= th: i)

In this case we approximate the correction to fourth order in space, which is more than
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necessary. The reason we do this is that we have been able to prove the stability of the
scheme, in that case. We can use a second order approximation based on the principle
of approximating the first order derivative. But then we do not have a stability result,
even though numerical experiment shows that the scheme is “stable” under the stability
condition of the (2-4) scheme.

The number of operations required by the correction term when we use the fourth order
approximation is 25 in 2D, so the total number of operation for the scheme is N,, =
98426 = 54. We assume in this calculation that we have stored the value of By = ‘A,(-};Ax)
and By = tAy(%Ay) s0 that we can reuse them in the computation of the correction term.

With this notation we can write the (4-4) staggered scheme as follows:

uftl = 2u?; +ul;! + (Bz + By)ul; + ‘(Bs + By)K(B: + By)ul;

1,5
So we compute in a first step B, and By, then compute (and store of course) their sum
in an array V, then compute (B; + By)KV = ‘B, KV + 'B,KV. Each computation of
one of the B operators takes 11 operations, so we add 25 operations for the correction
term. In 3D, the same procedure gives 38 operations for the correction term. So in 3D,
Nop = 40 + 39 = 79 The stability conditions for that scheme are the same as the (2-4)

staggered scheme that is :
Cmaz-BF . [Pmin =2~ 0.606.,/Pmn in 2D
Az Pmaz 7-\/5 Pmaz

Cmaz-Al [ Pmin 6 Pmin .
——— < ——— 0.495. —n 3D
Az - Pmaz 7.\/-3— Pmaz

Dispersion Analysis and Computational Cost

The dispersion relations for the (4-4) schemes are given by a modification of the dis-

persion relations of the (2-4) schemes (as one would expect). For the compact scheme we
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have :

w(k, )

(16) <

fo = Zcos(6)) fy =

. kA
sin( 5

\

- arcsin ( \/(f2 +0- 3520 +

. kA
sin( 5

® sin(0))

For the staggered scheme the dispersion relation is given by :

(f“+fy))

w(k,0) = % arcsin (CA;A‘:\/_(]}, + 92 - %(CA—A:)"’(QE + g2)? )
(17) < gz = gsin(3 Az cos(8)) — % sin( 3k2Az cos(6))
‘ gy = gsin( Az sin(0)) — 21—4 sin( 3k2Ax sin(6))
Error on the phase velocity
For the 2D case the results are the following.
Precision Compact Staggered
Scheme Scheme
n=2 p = 0.707 N, =740 p = 0.606 N, =10.16
H =0.191 Ny =5.23 H =0.162 Ny, =6.15
n=4 p=0.707 N, =8.80 p = 0.606 N, =12.13
H =0.160 Ny =6.25 H =0.136 Ny, =135
n==6 p=0.707 N, =9.75 p = 0.606 N, = 1347
H =0.145 Ny =6.89 H =0.122 N) =8.16
Using (5) we can compute the cost of the two methods.
Cost | Compact Scheme | Staggered Scheme | Staggered/Compact
Nop = 54 Nop = 54
n=2 2.73.10° 5.10.10° 186.33 %
n=4 4.64.10° 8.68.10° 187.00 %
n= 6.26.10° 11.88.10° 189.91 %
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n 3D we have
Precision Compact Staggered
Scheme Scheme
n=2 | p=0.577 N, =9.78 p = 0.495 N, = 12.28
H =0.177 Ny =5.64 H =0.163 Ny =6.11
n=4 p=0.577 N, = 11.67 p = 0.495 N, = 14.67
H =0.148 Ny, =6.73 H =0.136 Ny, =730
n==6 p = 0.577 N, =12.94 p = 0.495 N, =16.29
H =0.133 Ny =17.46 H =0.123 Ny, =8.11
Using (5) we can compute the cost of the two methods.
Cost | Compact Scheme | Staggered Scheme | Staggered/Compact
Nop =178 Nop =179
n=2 1.71.1012 2.73.1012 159.87 %
n=4 3.48.10'2 5.58.1012 160.42 %
n=6 5.25.1012 8.49.1012 161.62 %
Error on the group velocity
The results in 2D are the following.
Precision Compact Staggered
Scheme Scheme
n=2 p = 0.707 N,=11.13 p = 0.606 N, =15.28
H =0.127 Ny =787 H =0.108 Ny =9.26
n=4 p = 0.707 N, =13.21 p = 0.606 N, =18.33
H =0.107 Ny =9.34 H =0.090 Ny =11.11
n==~6 p = 0.707 N, =14.73 p = 0.606 N, = 20.37
H = 0.096 Ny =10.42 H =0.081 Ny =12.34

Using (5) we can compute the cost of the two methods.
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Cost | Compact Scheme | Staggered Scheme | Staggered/Compact
Nop = 54 Nop =54
n=2 9.31.10° 26.49.10° 284.53 %
n=4 15.56.10° 45.82.10° 294.47 %
n=6 21.60.10° 62.81.10° 290.78 %
[n 3D we have
Precision Compact Staggered
Scheme Scheme
n=2 p=0.577 N,=14.68 || p=0.495 N, =18.49
H =0.118 N) = 847 H =10.108 Ny =19.20
n=4 p = 0.577 N, =17.48. p = 0.495 N, = 22.01
H =0.099 Ny =10.09 H =0.091 Ny =10.96
n==6 p=0.577 N, = 19.45 p = 0.495 N, =24.45
H =0.089 Ny =11.22 H =0.082 Ny =12.18
Using (5) we can compute the cost of the two methods.
Cost | Compact Scheme | Staggered Scheme | Staggered/Compact
Ny, =78 Nop =179
n=2 8.71.10'2 14.03.10"2 161.10 %
n= 17.51.1012 28.30.1012 161.57 %
n= 26.80.1012 43.08.1012 160.73 %

Remarks

e The analysis in for the (4-4) schemes shows that the compact scheme requires less

points per wavelength and less points per period than the staggered (4-4) scheme.

So it is not surprising that the compact scheme achieves the same accuracy with a

smaller cost.
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COMPARISON BETWEEN THE (2-4) AND (4-4) CASES

First we compare the change in number of points per period when using fourth order
accuracy in time. For the Phase error we give below the ratio of number of points per

period for the (2-4) schemes / number of points per period for the (4-4) schemes. For the

3D case, we have

Precision | Compact Scheme || Staggered Scheme

n=2 1.91 1.54

=4 2.27 1.81

n==6 2.52 2.00

For the group error we have

Precision | Compact Scheme || Staggered Scheme

n=2 2.22 1.76

n=4 2.63 2.10

n==6 2.90 2.31

and we have analogous results in 2D. This clearly means that the change to the fourth
order in time benefits the compact scheme much more than the staggered scheme.
Let us see now what effect the change to fourth order accuracy in time has on the number

of points per wavelength. For the phase error we have in 3D :

Precision | Compact Scheme || Staggered Scheme
n=2 0.94 0.84
n=4 0.94 0.84
n=2=6 0.94 0.84

and for the group error:

Precision | Compact Scheme || Staggered Scheme
n=2 0.95 0.84
n =4 0.95 0.84
n==~6 0.95 0.84
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and again analogous results for the 2D case. This means that both scheme require more
points per wavelength for a given precision, when the fourth order correction term is used.

Again, the compact scheme loses “less” points per wavelength than the staggered scheme.

The goal of the numerical schemes is after all, to give an accurate numerical solution of
the wave equation at the lowest possible cost. So, we need to compare the (2-4) schemes
and the (4-4) schemes and clearly only the two best of each category. The best of the
(2-4) scheme is the staggered (2-4) scheme and the best of the (4-4) scheme is the (4-4)

compact scheme. Comparing the cost of each scheme we have the following results.

In 2D for the phase error

Cost | (4-4) Compact Scheme | (2-4) Staggered Scheme | Staggered/Compact
n=2 2.73.10° 2.26.10° 82.78 %
n=4 4.64.10° 4.55.10° 98.06 %
n=6 6.26.10° 6.86.10° 109.58 %
In 2D for the the group error
Cost | (4-4) Compact Scheme | (2-4) Staggered Scheme | Staggered/Compact
n=2 9.31.10° 8.85.10° 95.05 %
n=4 15.86.10° 17.85.10° 112.54 %
n=6 21.60.10° 26.82.10° 124.35 %
In 3D for the phase error
Cost | (4-4) Compact Scheme | (2-4) Staggered Scheme | Staggered/Compact
n=2 1.7134.102 1.2902.10'2 75.30 %
n=4 3.4831.10'2 3.0817.10!2 88.47 %
n="6 5.2559.10'2 5.1913.10!2 98.77 %

and for the the group error
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Cost | (4-4) Compact Scheme | (2-4) Staggered Scheme Staggered /Compact

n=2 8.71.10'2 7.615.10'2 87.74 %

n=4 17.51.1012 18.30.1012 104.99 %

n=6 26.80.10"2 30.68.1012 114.46 %
CONCLUSIONS

In this paper we endeavor to clarify the choice of a numerical scheme for wave propa-
gation problems in seismology. We set a framework in which to compare the cost of the
most widely used finite difference schemes to date. These are the compact and staggered
schemes, of order two or four in time and of order four in space.

Our main objective is to control dispersion artifacts. So we require that the numerical
simulations done with the numerical schemes in question satisfy an a priori precision. The
criteria we chose involved the phase and group velocities.

The preceeding cost analysis showed that the choice of the numerical scheme is related to
the degree of accuracy one wishes for the solution. When we increase the precision im-
posed on the phase and group velocities, then the (4-4) compact scheme becomes cheaper.
However the precision levels we choose are very high, since for instance they require for a
group shift of a quarter of wavelength, between 20 and 25 points per period and between
11 and 13 points per wavelength in 3D, for the (4-4) scheme. That is a stiff requirement
for this scheme, especially in 3D.

For geophysical applications, we can conclude that the (2-4) staggered scheme requires the
smallest number of operations for a reasonable precision level. It is the most economical
scheme among the family of (2-4) and (4-4) compact or staggered schemes.

We did not address the machine dependent problems of parallel architecture, vectorization
or fast access to memory. Those questions need to be address in practice and are very
important for the global performance of the finite difference scheme.

We had in mind in this paper to compare the numerical “methods” and not the numerical

“algorithm” resulting from them.
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