C++ and Fortran 77
Timing Comparisons

Phillip T. Keenan

CRPC-TR93347
November 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

C++4 and Fortran 77 Timing Comparisons

Philip T. Keenan*

November 10, 1993

Abstract

Recently there has been considerable debate within the scientific computa-
tion community over the suitability of C++ for large scale numerical compu-
tation. This note reports on timing studies of Fortran 77 and C++ conducted
on the Intel IPSC/3 Hypercube, the IBM RS-6000 and the Sun Sparc Station
2. Timings are presented for two fundamental algorithms including a dense
vector inner product and multiplication of a dense vector by a sparse matrix.
Comparison to hand coded assembler routines is also provided in selected cases.
The results demonstrate that C and C++ can be just as efficient as FORTRAN
and therefore deserve serious consideration.

*Department of Computational and Applied Mathematics, Rice University. Supported in part
by a National Science Foundation Postdoctoral Research Fellowship in Mathematical Sciences

Contents

1 Introduction 2
1.1 Machines . . v v v v v v e e e et e e e e e e e e e e e 3
1.2 Compilers . . . v v v v v e e e e e 3
1.3 Compiler Options v v vt vt 4
1.4 CH++and C . .o vt e e e e e e 5
1.5 Problem Sizes . . .« . v v vt e e e e e e e e e e 6

2 Dense Inner Product 6
2.1 Timing Results 8

3 Sparse Matrix Multiplying Dense Vector 12
3.1 Timing Resultso 16

4 Summary 20

1 Introduction

Recently there has been considerable debate within the scientific computation com-
munity over the suitability of C++ for large scale numerical computation. This note
reports on timing studies of Fortran 77 and C++ conducted on the Intel IPSC/3
Hypercube, the IBM RS-6000 and the Sun Sparc Station 2. Timings are presented
for two fundamental algorithms including a dense vector inner product and multi-
plication of a dense vector by a sparse matrix. Comparison to hand coded assembler
routines is also provided in selected cases. The results demonstrate that C and C++
can be just as efficient as FORTRAN and therefore deserve serious consideration.
A number of hardware and software factors complicate any attempt at comparing
timings. The run time of any algorithm depends upon many factors, including

e the exact form of the Fortran 77 or C source code used to implement it,
e the version of the compiler used to compile it,

e the compiler options used, especially the optimization level selected,

the target machine used to run on, and
e the problem size.

It can therefore be dangerous to generalize empirical results to other machines,
compilers, algorithms and problem sizes. Nevertheless, the empirical results pre-
sented here provide useful insights. To provide a basis for comparison with other

timing tests, the rest of this introduction documents the machine and compiler ver-
sions used in the timing tests. Those wanting a quick summary of the results can
find one in the final section of this report.

1.1 Machines

Timing tests were run on the following 3 platforms:

e One 1860 based node of an Intel IPSC/3 Hypercube. By focusing on a single
node, issues of parallel communication overhead do not enter in. The node
had 16 Megabytes of RAM and an 8k byte data cache.

e An IBM RS-6000 workstation with 192 Megabytes of RAM.

o A Sun Sparc Station 2, with 40MHz clock, 32 Megabytes of RAM, and a Sun-4
floating-point controller version 2, based on a 40MHz TI TMS390C602A-based
FPU.

All three machines are modern super-scalar workstations. If they have any vec-
torizing capability, the vector pipeline is quite short: 3 cycles on the i860 chip.
Timings are given below for several alternative formulations of a sparse matrix -
vector multiplication. The ranking of the tested algorithms in order of efficiency
might change on a traditional vectorizing supercomputer such as a CRAY. How-
ever, the intent here is not to study numerical linear algebra algorithms, but to
compare the efficiency of the same algorithm implemented in different programming
languages. In this respect the results are likely to have wide validity.

1.2 Compilers

The current FORTRAN and C node compilers were used on the i860 platform.
These were:

e if77: The PGFTN Rel 2.0a node FORTRAN-77 compiler.
e icc: The PGC Rel 2.0a node C compiler.

Note that the two compilers are from the same release, making it appropriate to
compare them. Indeed, it turns out that they share a great deal of functionality
and even generate essentially the same assembly language code in many cases.

The current FORTRAN and C node compilers were used on the RS-6000 plat-
form. These were:

e £77: The IBM AIX XL FORTRAN Compiler/6000, Version 2.02.0100.0003.
This is the same as x1f.

e cc: The IBM AIX XL C Compiler/6000, Version 1.02.0000.0000.

Although the FORTRAN compiler is newer, the C compiler produced more efficient
code.

The current FORTRAN and C compilers were used on the Sparc platform. In
addition, an older C compiler and the GNU C compiler were also examined.

e £77: The SC1.0 FORTRAN-77 SPARCcompiler, V1.4, patch release 3
(30Sep1991).

e cc: The SC1.0 C SPARCcompiler, V1.1 (1Mar1991).

e old-cc: The old (1988) Sparc C compiler, which lacks the -cg89 compiler
option among others. It is included because until these timing tests were
done, it was the default C compiler on the Rice CS network.

e gcc: The GNU C compiler, version 2.3.3 for Sparc. GNU does not support a
FORTRAN compiler at this time.

Although the FORTRAN SPARCcompiler is actually 6 months more advanced than
the C SPARCcompiler, the C compiler produced more efficient code.

1.3 Compiler Options

Each compiler family has its own set of command line options controlling opti-
mization. There are too many possible combinations to report on every possibility.
However, each compiler was tested at all supported levels of optimization, with and
without any extra speed options recommended by the compiler manual.

Many numerical analysts never use optimizations above the basic -02 level, in
part because some compilers generate incorrect code in certain instances at higher
optimization levels! At the least, optimization can change the round off error prop-
erties of floating point expressions, thereby introducing errors. However, accuracy
checks throughout the test program found only roundoff scale variations in the re-
sults across all optimization levels.

For the i860 the optimization levels used were -02, -03, and -04. These were
optionally combined with the following speed options:

o if77: -Mvect
e if77: -Mvect -Knoieee

e icc: -Mvect -Msafeptr=arg,auto -Mnodepchk

The -Knoieee had no significant effect here. In general it is not recommended, as
its use amounts to (possibly) getting extra speed by (probably) giving up several
digits of accuracy in the computations. The IEEE standard was carefully designed
to produce highly accurate and portable floating point arithmetic. If this flag does
make your code run faster it is likely a hint that either the algorithms in it are not
numerically robust, or that they make too much use of time consuming operations
like division.

For the RS-6000 one simply specifies -0 to invoke all compiler optimizations.
The case of no optimization was included for comparison.

For the Sparc 2 the optimization levels used were -02, -03, and -04. These were
optionally combined with the following speed options:

o £77: -fast

e cc: -dalign -cg89

e old-cc: -dalign

e gcc: -fschedule-insns -fschedule-insns2 -fdelayed-branch

Note that gcc has only the single optimization level -0.

1.4 C4+ and C

No C++ compiler has yet been mentioned. This is because the standard C++
compiler from AT&T actually translates C++ source code into C source code, which
is then compiled using whatever C compiler and options one wishes, for whatever
machine one wishes. Thus at the lowest level the comparison is really between
specific FORTRAN and C compilers on a given machine. Since C is a subset of
C++, any C algorithm is also a valid C++ algorithm and the translation step is
trivial.

To the application programmer, however, C++ code can look much nicer than C
code. In particular, using an appropriate class library, vector and matrix operations
can be specified with “array syntax” as in languages such as FORTRAN 90 and
APL. How these operations are implemented is up to the designer of the library. In
particular, the designer can select the optimal available routine (written in Assem-
bler, C or even FORTRAN), and use it in the implementation of the class library.
This choice is invisible to the application programmer and requires zero change to
the application program. However, proper choice here means that C++ will always
win against any other compatible language.

When this C++ library implementation is timed, it is denoted C++ library in
the comparisons below. It is proper to consider this version, as it corresponds to
what high performance FORTRAN compilers such as the i860’s 1£77 do when they

recognize certain special loops, such as dot products, and replace them by calls to
hand coded assembly routines. To facilitate this comparison, FORTRAN timings
are marked i£77 library when the i£77 compiler substituted calls to hand coded
dot product routines. The i£77 option -Minfo=1loop makes the compiler mention
whenever it makes such a substitution. Note that these substitutions only occur
when invoked by the -Mvect option.

In order to provide fair comparisons of what can be conveniently accomplished
in each high level language, timings are also presented for direct C++ source code
implementations. These give a more realistic picture of the timings that can be
expected from explicit loops which are implemented for simplicity rather than speed.
These cases are denoted C++ in the timings below.

1.5 Problem Sizes

This report is primarily intended for researchers solving large sparse systems of lin-
ear equations such as those arising in the numerical solution of partial differential
equations. Generally these problems are too large to fit in the hardware cache on
most machines. While timings are provided for small problems (vectors of length
1000) which do fit in cache, the more important timings are those for large problems
(8000 or more vector elements), in which cache effects play only a minor role. Tim-
ings for large problems (27,000 vector elements) were consistently about 1% slower
than for 8000 element problems, and so are not reported on below.

When the Intel Hypercube is used as a parallel machine, issues of communication
time arise that are not dealt with in this report. The problem sizes considered here
are relevant, however, on a per-processor basis. For instance, a typical large problem
involving one million vector elements on 100 processors might put 10,000 on each
processor.

2 Dense Inner Product

The first algorithm considered is the inner product of two dense vectors. The plain
Fortran 77 version is

doubleprecision function inf(v,w,N)
integer N

doubleprecision v(N), w(N)

integer i

inf = 0.0
do 1, i=1,N
inf = inf + v(i)*w(i)

1 continue
return
end

The plain C version is

double inc(double *v, double *w, int N)
{
double sum = 0;
int i;
for(i=0; i<N; i++)
sum += v[i]*w[i];
return sum;

}
The C++ version, using the Keenan C++ Class Library, is simply to write
double inp = v*w;

C++ automatically implements this as a call to doubleArray: :operator*, which
can be implemented by the designer of the class library in any desired language, as
discussed above. For purposes of comparison, the pure C++ implementation used
in this class library is

double doubleArray::operator*(doubleArrayZ v)
{

register double sum=0;

const double *vp = v.elts;

const int i0 = fi;

const int i1 = 1i;

for(int i=i0; i<=il; i++)

sum += elts[i] * vp[i];
return sum;

}

In addition, on the i860 platform three hand coded assembly language versions are
available.

One, denoted hand assembled, was hand written and tuned by the author as
an experiment. This took two days, even for such a simple operation: one to learn
the assembly language, another to write, debug and optimize the code! Assembly
language is clearly far too primitive to use for any but the most crucial inner loops
of a program.

Two professionally tuned hand coded assembly language versions are also avail-
able. The blas routine is supplied in the third party -1kmath BLAS library on the

7

i860, while the dotp8 routine is supplied by Intel. In particular, the dotp8 routine
is used in the i£77 library case.

2.1 Timing Results

27 compiler and optimization option combinations were timed on the Sparc, 23 on
the i860 and 7 on the RS-6000.

Table 1 presents the SPARC timing results, Table 2 presents the RS-6000 results,
and Table 3 presents the IPSC results. N is the vector length. To save space in
Table 1 only the fastest combinations are listed for the old C and GNU C compilers.

All cases were iterated to get timings of 10 seconds, as the real time clock
resolution on these machines is not high. Small variations in the last reported
decimal digit of the MegaFlop rate can occur from run to run. Each dot product was
counted as 2N floating point operations. Cache effects decrease as the vector length
increase. Cache effects are less noticeable on the IPSC except in the professionally
tuned assembly language routines which are written to make maximum use of cache.
As a result they run quite fast on small problems. This is not very realistic, however,
as cache does not speed up the first execution of a given routine with a given data
set: only if the data is accessed again prior to being pushed out of cache by new data
will there be any significant speed increase. In real codes one does not repeatedly
take the dot product of the same pair of vectors, so except for very small problems
these high Megaflop rates are not realistic. However, some manufacturers like to
quote rates like those in the N = 1000 column as “peak” performance numbers.

Table 1: SPARC Timing Results: Dot Product

Algorithm | Compiler Options MegaFlops(N=1000) l;d_egaF;);s(_N=8()T(D
plain f77 -02 4.1 2.5
plain £77 -03 6.1 3.2
plain 77 -04 6.1 3.2
plain f77 -fast -02 4.5 2.7
plain f77 -fast -03 7.2 3.5
plain f77 -fast -0O4 7.3 3.5
plain gee -0 -f... 4.5 2.7
plain old-cc -dalign -O4 6.8 3.4
plain cc -02 4.1 2.5
plain cc -03 6.7 3.2
plain cc -04 6.8 3.2
plain cc -dalign -cg89 -02 4.5 2.7
plain cc -dalign -cg89 -03 8.2 3.6
plain cc -dalign -cg89 -04 8.1 3.5
plain C++ -02 4.1 2.4
plain C++ -03 6.8 3.2
plain C++ -04 6.7 3.1
plain C++ -dalign -cg89 -03 4.6 2.7
plain C++ -dalign -cg89 -03 8.1 3.5
plain C++ -dalign -cg89 -O4 8.2 3.6

C++ library | C++ -O 7.6 3.5

Table 2: RS-6000 Timing Results: Dot Product

Algori_thm } C;mpiler OptionsTﬁe—gaFlops(N=1000) MegaFlops(N=8000)
plain £77 2.6 2.5
plain £77 -0 40.5 24.5
plain cc 4.1 3.9
plain cc -0 40.5 24.5
plain C++ 4.1 3.9
plain C++ -0 40.5 24.5
C++ library | C++ -O 40.5 24.5

10

Table 3: i860 Timing Results: Dot Product

B e e e

Algorithm | Compiler Options | MegaFlops(N=1000) —MegaFlops(N=80;ElT-
plain 77 -02 5.0 4.8
plain 77 -03 6.5 5.9
plain 77 -04 6.5 5.9

if77 library | f77 -Mvect -02 12.2 12.6

if77 library | f77 -Mvect -03 12.3 12.6

if77 library | f77 -Mvect -04 12.3 12.6
plain cc -02 5.0 4.8
plain cc -03 6.5 5.9
plain cc-04 6.5 5.9
plain cc -Mvect -02 5.0 4.8
plain cc -Mvect -0O3 6.5 5.9
plain cc -Mvect -O4 6.5 5.9
plain C++ -02 5.0 4.8
plain C++ -03 6.5 6.2
plain C++ -04 6.5 6.2
plain C++ -Mvect -02 5.0 4.8
plain C++ -Mvect -03 6.5 5.9
plain C++ -Mvect -04 6.5 5.9

blas library | assembler 17.9 9.7
hand coded | assembler 8.2 7.2
C++ library | C++ -O 12.1 12.6

11

3 Sparse Matrix Multiplying Dense Vector

Dot products are so simple to compute that they do not accurately represent timings
for real codes. Indeed, some manufacturers supply professionally tuned assembly
language code for dot products. Dense linear algebra in general is well studied and
many compilers are tuned by using LINPACK (now superseded by LAPACK) as
a benchmark. However, partial differential equation solvers deal with sparse linear
algebra, which is less well understood. In particular, none of the compilers tested in
this study had access to hand tuned assembly code for the case of a sparse matrix
multiplying a dense vector. Thus this example gives a more realistic comparison of
the abilities of the various compilers.

Multiplying a vector by a matrix is a more interesting example from a computer
science perspective as well, as two new issues come in. First, the process involves a
double loop, so that reordering the loop or changing between row major and column
major matrix storage becomes a possibility. Moreover, the answer is a vector, not
a scalar, and hence involves storing into array elements. This raises the specter
of data dependencies. The conventional wisdom is that C must be slower in such
situations, as it allows arbitrary dependencies, while FORTRAN can do additional
optimizations because it prohibits arbitrary dependencies. Fortunately, however,
modern compiler writers are aware of this issue and provide a compiler flag that can
be used to tell the C compiler that it is safe to do FORTRAN style optimizations on
a particular subroutine. As a result, C compilers can produce code just as efficient
as FORTRAN compilers create.

In particular, the i860 C compiler option -Msafeptr=arg,auto enables FOR-
TRAN style optimizations. On the RS-6000 aggressive optimization is the default,
with an option provided to turn it off when needed. The SPARC compiler does not
provide such an option, but its timings do not suffer, as shown below. This implies
that even the FORTRAN compiler does not find these optimizations profitable on
the SPARC architecture.

A sparse matrix M is represented in this example by a double precision matrix
D and an integer matrix C. If M is N by N and has at most K non-zero entries
per row, then D and C are N by K arrays. The entries are related by the equation

d,‘j = Mj;,-
To avoid needing branch statements to detect unused entries in d inside the inner
loop, explicit zeros are placed in d where needed, rather than using a special code
value in the ¢ matrix. To give the FORTRAN versions an extra advantage, all
indices started at 1 rather than zero.

This representation was chosen as typical of the sort of indirect addressing needed
to handle general geometry and general boundary conditions in partial differential

12

equations. For the numerical example, K = 7 and the 7-point stencil of a three
dimensional rectangular finite difference code was used for simplicity.

Four different implementations were timed in each language. Two used row-
major memory storage for the matrices, and two use column-major storage. For
each storage pattern, one routine used a loop of row dot products while the other
used a loop of column sums (often called a sazpy). It is interesting to note that the
fastest running versions were invariably the row major dot products, which are the
natural thing a C program would use, but which are quite un-natural in FORTRAN.
This is due both to the sparsity representation and to the use of modern super-scalar
workstations in this study. The results might be quite different on a traditional
vector processor with a long vector pipeline, such as a CRAY, since K is generally
small compared to N.

The plain FORTRAN 77 versions of the sparse matrix — vector multiply were

¢ Column Major Storage, Saxpy Form

subroutine cef(data,cols,nrows,ncols,dest,src)

integer nrows, ncols, cols(nrows,ncols)

doubleprecision data(nrows,ncols), dest(nrows), src(nrows)
integer r, c

do 1, r=1,nrows
dest(r) = 0.0
1 continue

do 2, c=1,ncols
do 3, r=1i,nrows
dest(r) = dest(r) + data(r,c)*src(cols(r,c))
3 continue
2 continue
return
end

¢ Column Major Storage, Dot Product Form

subroutine cdf(data,cols,nrows,ncols,dest,src)

integer nrows, ncols, cols(nrows,ncols)

doubleprecision data(nrows,ncols), dest(nrows), src(nrows)
integer r, c

doubleprecision sum

13

do 1, r=1,nrows
sum = 0.0
do 2, c=1,ncols
sum = sum + data(r,c)*src(cols(r,c))

2 continue
dest(r) = sum
1 continue
return
end

¢ Row Major Storage, Saxpy Form

subroutine ref(data,cols,nrows,ncols,dest,src)

integer nrows, ncols, cols(ncols,nrows)

doubleprecision data(ncols,nrows), dest(nrows), src(nrows)
integer r, ¢

do 1, r=1,nrows
dest(r) = 0.0
1 continue

do 2, c=1,ncols
do 3, r=1,nrows
dest(r) = dest(r) + data(c,r)*src(cols(c,r))
3 continue
2 continue
return
end

¢ Row Major Storage, Dot Product Form

subroutine rdf(data,cols,nrows,ncols,dest,src)

integer nrows, ncols, cols(ncols,nrows)

doubleprecision data(ncols,nrows), dest(nrows), src(nrows)
integer r, c

doubleprecision sum

do 1, r=1,nrows

sum = 0.0
do 2, c=1,ncols

14

sum = sum + data(c,r)*src(cols(c,r))

2 continue
dest(r) = sum
1 continue
return
end

The plain C are essentially identical to the FORTRAN versions, except for being
written in C notation, and so will be omitted, except for the first, which gives the
flavor of the rest.

/* Column Major Storage, Saxpy Form */

void cec(data, cols, R, C, dest, src)
double *data, *dest, *src;

int *cols;
int R, C;
{
int r, c;
src --;
/* since for fortran’s benefit columns start at 1 */
for(r=0; r<R; r++)
dest[r] = 0.0;
for(c=0; c<C; c++)
for(r=0; r<R; r++)
dest[r] += data[c*R+r]l*src[cols[c*R+r]];
}

The C++ versions are also quite similar and so again only the first will be shown
here:

// Column Major Storage, Saxpy Form

void ceC(cMatrix& data, cIntMatrix& cols,
doubleArray& dest, doubleArray& src)
{
const int cO0 = cols.f2;
const int cl1 = cols.l2;
const int rO = cols.fl;
const int ri1 = cols.li;

15

dest = 0;

for(int c=c0; c<=cl; c++)
{
doubleArray& da = data(c];
intArray& ca = cols(cl;
for(int r=r0; r<=ri; Ir++)
dest(r) += da(r)*src(ca(r));

}

These C++ versions are somewhat less efficient than the corresponding C versions.
This is in part because the underlying implementation of vectors and matrices used
here is not the most efficient possible, within C++, thus preventing certain opti-
mizations. The Keenan C++ Class Library is still evolving and the experience of
these timing studies will influence the next revision. However, even the existing
library allows the programmer to access C++ vectors and matrices as C arrays.
The C++ library versions cited in the timings below use this fact to advantage by
calling the optimal C routine instead.

3.1 Timing Results

108 compiler, option and implementation combinations were timed on the Sparc,
80 on the i860 and 28 on the RS-6000. To reduce the volume of information, the
results are presented in a summary format.

Tables 4, 5, and 6 present, for each machine separately, the fastest methods in
each category. That is, for each combination of language, memory storage layout
and algorithm (dot or saxpy), the set of compiler options which produced the best
time on vectors of length 8000 is reported.

As before N is the vector length. All cases were iterated to get timings of 10
seconds, as the real time clock resolution on these machines is not high. Small
variations in the last reported decimal digit of the MegaFlop rate can occur from
run to run. Each sparse matrix product was counted as 8NV floating point operations.
Cache effects are less noticeable here because of the larger storage requirements for
matrices.

In general there was little difference between the -03 and -04 levels.

16

Table 4: SPARC Timing Results: Fastest Methods: Sparse Matrix

Algorithm

Compiler Options Méga.Flops(N=—1000) MegaFlops(N=8000)

row, dot | f77 -fast -O4 2.7 2.5
col, dot | f77 -fast -O3 2.7 2.3
col, saxpy | f77 -fast -O4 2.4 1.7
row, saxpy | f77 -fast -O4 1.1 0.9
row, (i)t_- cc —d:li-gn -cg89 -(;- 2.7 2.5
col, dot | cc -dalign -cg89 -04 2.8 24
col, saxpy | cc -dalign -cg89 -03 2.1 1.6
row, saxpy | cc -dalign -cg89 -O4 1.1 0.9
row, dot | C++ -dalign -cg89 -03 2.0 2.0
col, dot | C++ -dalign -cg89 -03 2.1 1.9
col, saxpy | C++ -dalign -cg89 -04 1.8 1.4

row, saxpy | C++ -dalign -cg89 -O4 0.6 _0_.6]

row— C++ (library) B 2.7 i 2.5]
col C++ (library) 2.8 2.4

17

Table 5: RS-6000 Timing Results: Fastest Methods: Sparse Matrix

Algorithm | Compiler Options | MegaFlops(N=1000) MegaFlops(N=8000)
row, dot | f77 -0 13.1 12.8
col, dot 77 -0 13.2 12.5
col, saxpy | f77 -O 11.3 9.6
row, saxpy | f77 -0 5.7 5.3
row,_dot cc -0 13.4 ﬁ13.0
col, dot cc -0 13.7 13.0
col, saxpy | cc -O 11.3 9.6
row, saxpy | cc -O 5.1 4.8
row, dot | C++ -0 6.2 GT]
col,dot | C++ -0 4.9 4.8
col, saxpy | C++ -O 4.5 4.2
row, saxpy | C++ -O 2.6 2.5
row C++ (library) - 1.:3_.3 1-3:.1]
col C++ (library) 13.7 13.0

18

Table 6: 1860 Timing Results: Fastest Methods By Language: Sparse Matrix

Tlgorithm Compiler Options | MegaFlops(N=1000) | MegaFlops(N=8000)

row, dot | f77 -Mvect -O4 4.0 4.0
row, saxpy | f77 -Mvect -O4 3.8 3.7
col, saxpy | f77 -Mvect -O4 3.3 3.2
col, dot | f77 -Mvect -O4 3.9 3.2
row, dot | cc -O4 4.-0_ 4.0
col, dot | cc-03 4.0 3.3
col, saxpy | cc -O4 2.7 2.6
row, saxpy | cc -O4 1.4 1.4
row, d:- C++ -04 2.7 2.7
col, dot | C++ -04 3.1 2.5
col, saxpy | C++ -04 2.0 1.9
row, saxpy | C++ -02 0.9 0.9
row C++ (library) 4.0 4.0
col C++ (library) 3.9 3.1

19

4 Summary

For inner products, Tables 7, 8, and 9 present the fastest methods in each language
category, for vector length 8000.

Table 7: SPARC Timing Results: Fastest Methods: Inner Product

Algorithm | Compiler Options MegaFlops(N=8000)
plain 77 -fast -04 3.5
plain gee -0 -f... 2.7
plain old-cc -dalign -04 3.4
plain cc -dalign -cg89 -03 3.6
plain C++ -dalign -cg89 -03 3.6
library | C++ (library) 3.5

Table 8: RS-6000 Timing Results: Fastest Methods: Inner Product

—Algor;hm (_J-o—n-lpiler Optio:ls ;/IegaFlops(N=8000)
plain 77 -0 24.5
plain cc -0 24.5
plain C++ -0 24.5
library | C++ (library) 24.5

20

For sparse matrices, Tables 10, 11, and 12 present the fastest methods in each
language category, for vector length 8000.

Table 9: i860 Timing Results: Fastest Methods By Language: Inner Product

Algorithm | Compiler Options Mega.Flops(N:S-O-OO)
plain f77 -03 5.9
library f77 -Mvect -03 12.6
plain cc-03 5.9
plain C++ -03 5.9
library C++ (library) 12.6
BLAS assembler 9.7
hand-coded | assembler 7.2

Table 10: SPARC Timing Results: Fastest Methods: Sparse Matrix

Algorithm | Compiler Options MegaFlops(N=8000)

row, dot | f77 -fast -O4 2.5
row, dot | gcc -0 -f... 2.4
row, dot | old-cc -dalign -O4 2.4
row, dot | cc -dalign -cg89 -O4 2.5
row, dot | C++ -dalign -cg89 -O3 2.0

row C++ (library) 2.5

21

Table 11: RS-6000 Timing Results: Fastest Methods: Sparse Matrix

Algorithm | Compiler Options MegaFlops(N=8000)
row, dot | 77 -O 12.8
row, dot | cc -O 13.0
row, dot | C++ -0 6.1
row C++ (library) 13.1

Table 12: i860 Timing Results: Fastest Methods By Language: Sparse Matrix

_Algorit-hm _C-ompilerLOpt-:i_ons -Mega.F10ps(N=8000)-
row, dot | f77 -Mvect -O4 4.0
row, dot | cc -O4 4.0
row, dot | C++ -04 2.7
row C++ (library) 4.0

22

References

[1] G. GoLuB AND C. V. LoAN, Matriz Computations, 2nd. ed., Johns Hopkins,
1989.

[2] S. LipPMAN, The C++ primer, 2nd ed., Addison Wesley, 1992.

[3] B. STROUSTRUP, The C++ Programming Language, 2nd ed., Addison Wesley,
1991.

23

