Nonlinear Programming and
Domain Decomposition for
Partial Differential Equations

John E. Dennis, Jr.
Robert Michael Lewis

CRPC-TR92252
September 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Nonlinear programming and domain decomposition for partial
differential equations

John E. Dennis, Jr.
Robert Michael Lewis
Dept. of Mathematical Sciences
Rice University
Houston, Texas

We will discuss several approaches we have developed for integrating domain decomposi-
tion methods for partial differential equations into formulations for nonlinear programming
(NLP) algorithms for solving optimization problems governed by PDE. The methods we
have developed seek to exploit computational parallelism in the solution of PDE; however,
our optimization methods-are not simply parallel implementations of existing approaches.
Instead, our NLP methods take advantage of domain decomposition for PDE to produce
more efficient and robust methods for the optimization problems we seek to solve.

There is no question that we will need to exploit computational parallelism in such
large-scale problems as optimal control, optimal design, and nondestructive evaluation for
systems governed by partial differential equations. The dominant cost in such optimization
problems is the repeated simulations of a physical system for new values of control or design
parameters. In developing nonlinear programming methods for systems governed by PDE,
we have concentrated on exploiting computational parallelism in the solution of the attendant
differential equations. The methods we are investigating seek to reduce the effort expended
on the solution of PDEs.

In the simplest instance, the problems we consider can be formulated as large-scale non-
linear programming problems of the following form:

mirnimize f(z,y(z)) (1)

where z represents the control variables and y(z) the state variables. The control and state
variables are related by solving some relation

h(z,y(z)) =0 (2)

for y(z). In our work on such optimization problem we choose to view the state equations
as constituting equality constraints for the optimization problem. The preceding problem
we would thus formulate as

-

minimize f(z,y) (3)

subject to h(z,y)=0. '
This formulation is motivated by the opinion, widely held in the optimization community,
that if one has equality constraints in an optimization problem, it is generally inefficient
to maintain feasibility with respect to these constraints at every step of an optimization
algorithm; one really need only insure that feasibility will be attained at the same time as
constrained optimality. Yet, such feasibility would be enforced in the formulation given by
(1) and (2). If we no longer demand feasibility at every iteration of the NLP algorithm. we
are led to (3), in which we expand the parameter space to (z,y) and remove the additional

1

degrees of freedom at the solution via the constraints. However, the equality-constrained
optimization algorithm we use allows iterates (z,y) that are not necessarily feasible with
respect to the constraints. This means that we can take advantage of the additional degrees
of freedom to move more quickly to a solution since we are not required to move along the
manifold defined by the constraints.

We can treat these equality constraints relating the control variables to the state variables
in various ways. For instance, we can maintain feasibility with respect to these constraints
in every optimization iteration, which corresponds to what we call the “black-box” approach
(1)-(2). At the other extreme, we have what we call the “all-at-once” approach, in which
all the state equations are treated as equality constraints. A compromise between these two
extremes leads to what we call the “n-between” approach, in which we maintain feasibility
with respect to some of the state constraints while allowing infeasibility with respect to
others.

These ideas are best explained by an example that we will discuss at length in our paper.
Our model problem will be a simple instance of nondestructive evaluation, in which we seek
to identify the coefficient in a second-order elliptic boundary-value problem (BVP). Let Q
be some smoothly bounded domain, and consider the following BVP defined on {:

-V .- (KVp)=gq on{

p=g on 0f) (4)

The inverse problem we will consider is the following: suppose that S is some subset of 2
and that we know pgaia = pls. Can we then identify the coefficient K(z,y, z)?

This problem is ill-posed, in the sense that K will not be well-determined on all of Q by
data given on only part of 2. However, we will ignore this fact and the need for regularization
for the purposes of our exposition.

We can formulate the problem of identifying K as a least-squares problem: For some
choice of inner-product norm || - ||, we wish to solve

. . . r 2
minimize “ p[Ix]|S — Ddata

This formulation corresponds.to the “black-box” approach to identifying K (z,y,2). The
“black-box” approach is characterized by the retention of the implicit relation between the
state variable p and control variable K in the NLP—in order to compute the least-squares
residual p[K] — Pdata, We need to solve (4). Similarly, we need to solve the following auxiliary
BVP in order to compute the gradient of the least-squares objective function:

-V - (KVw) = p — Pdata on)
w=20 on 00.

We must solve yet more BVP to obtain other information needed for the optimization al-
gorithm. The point is one we mentioned earlier; the cost of repeated simulations—BVP
solutions, in this case—becomes dominant in the optimization algorithm.

Faced with the expense of such computations, we might naturally appeal to a domain
decomposition method for handling the BVP. For this model problem, we choose a non-
overlapping decomposition method devised by Glowinski and Wheeler (1], (2]. The idea of

2

this method is to subdivide the domain into smaller subdomains, add additional boundary
values at the subdomain interfaces introduced by the decomposition, solve the resulting
BVP on the subdomains, and then iteratively adjust the boundary values on the subdomain
interfaces until fluxes between the subdomains match. To express this more precisely, we
will assume for simplicity that Q is subdivided into only two subdomains £, and ;. We
then solve the following problem. Choose Dirichlet data = for the boundary between {2, and
Q,, and solve, for i = 1,2,

-V -(KVp;)=4q on
pi=yg on 99Q; N 9N
pi=T on 9%; \ 0N

The game then becomes to choose 7 in such a way that the jump in the fluxes between
and Q, is zero; on 9%; N 0Q;, we want

[(KVp)-v] = (KVp) -n+(KVp) =0, (5)

where v; is the outward pointing normal on 99;. This flux matching condition can be
enforced by solving an auxiliary linear system that is symmetric and positive definite.

From an optimization perspective, enforcing the flux matching condition in the solution
of the BVP represents enforcing feasibility with respect to a constraint that expresses the
consistency of the subdomain solutions. As we previously mentioned, this is not a good
idea from the standpoint of optimization. The idea of the “in-between” approach is to
make explicit in the nonlinear programming formulation the flux-matching constraint that
is implicit to the domain decomposition method.

In the “in-between” approach, we make this implicit flux matching constraint explicit
and add it as a constraint to the nonlinear programming problem. Since our optimization
algorithm allows iterates which may be infeasible with respect to this constraint, we are not
concentrating our efforts on solving the BVP that represents the physical system. Instead,
the progress of the optimization drives the accuracy with which we solve the state equa-
tions. We solve the PDE accurately—which is equivalent to feasibility with respect to the
constraints—only as we achieve optimality.

Making the flux matching condition explicit in the NLP results in the following con-
strained least-squares formulation: :

2

minimize "p[I‘\' , ﬁ]\ g ~ Pdata
subject to [(KVp)-v] =0,

where p[K, 7] is given by the solving on each subdomain ; the BVP.

-V - (KVp;)=gq on
pi=g on 0%; N 9N
pi=T on 0%; \ 9.

We have expanded the parameter space now from K to (K,); the constraint removes
the additional degrees of freedom. However, since our equality constrained optimization

algorithm allows iterates to be infeasible, we can take advantage of the additional degrees of
freedom in order to make more rapid progress towards solution of this problem.

We can go further and formulate the “all-at-once” method for the domain decomposition
formulation of the BVP; in this approach we treat the subdomain BVP as constraints as

well:)

minimize “p's — Pdata
subject to [(KVp)-v] =0 across subdomain interfaces
-V - (KVp;)=q on
pi=4g on 99Q; N QY
pi=T on 60' \ BQ,

In this case the control variables are now (p, 7, K).

The “in-between” and “all-at-once” methods each have advantages. The “in-between”
method has fewer constraints than the “all-at-once” method, so its implementation is some-
what simpler. On the other hand, the “in-between” method retains an implicit relation
between K and p, which complicates the computation of derivatives with respect to K. We
anticipate that further numerical tests will help better clarify the advantages and disadvan-
tages of these two methods.

These ideas are applicable to other optimization problems and other domain decomposi-
tion techniques. The key is the observation that in a typical domain decomposition method,
the region over which a PDE is to be solved is divided into smaller regions, and the PDE is
then solved on each of the smaller regions in parallel. Some manner of correction is made and
the subdomain solutions are continued until the solutions on the collection of subdomains
represents the solution on the original domain. The consistency condition that one attempts
to enforce can be lifted into the formulation of the optimization problem.

We will describe in greater detail how to apply these ideas to the model problem presented
here and to other optimization problems involving PDE and domain decomposition, and
how our domain decomposition formulations lead to computationally and analytically more
tractable problems. We will also describe the trust-region algorithm for equality constrained
optimization that we use and discuss how its design is affected by the domain decomposition
approach. Finally, we will give results of numerical tests and comparisons of our Intel Gamma
and Delta implementations of-the “black-box”, “in-between” and “all-at-once” methods for
our model problem.

References

[1] L. C. CowsAR AND M. F. WHEELER, Parallel domain decomposition method for mized
finite elements for elliptic partial differential equations, in Fourth International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations, R. Glowin-
ski, Y. A. Kuznetsov, G. Meurant, J. Périaux, O. B. Widlund, eds., Philadelphia, 1991,
SIAM.

[2] R. GLOWINSKI AND M. F. WHEELER, Domain decomposition and mized finite element
methods for elliptic problems, in First International Symposium on Domain Decompo-

sition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant,
and J. Periaux, eds., Philadelphia, 1988, STAM.

