A Hierarchical Availability
Model for Multiprocessor Computers

A. Gaber Mohamed
Salim Hariri
Hasan B. Mutlu

CRPC-TR92211
April, 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

A HIERARCHICAL AVAILABILITY MODEL FOR MULTIPROCESSOR COMPUTERS

A. Gaber Mohamed
Northeast Parallel Architectures Center (NPAC)
Syracuse University, 111 College Place, Syracuse, New York
agm@nova.npac.syr.edu

Salim Hariri
Electrical and Computer Engineering
Syracuse University, 111 Link Hall, Syracuse, New York
hariri@snow-white.ece.syr.edu

and

Hasan B. Mutlu
AT&T Bell Laboratories, Naperville, Illinois

Abstract—- The importance of availability of parallel computers increases as their uses continu-
ously spread to many areas where failures can have catastrophic costs. The increased complexi-
ty of such systems and the sophistication of the availability measures of interest makes evalua-
tion of these metrics more challenging. The most promising practical evaluating techniques are
based on Markovian and network graph models. In this paper, we propose a two-level availa-
bility model, that integrates Markovian model and network graph techniques, to analyze the
availability of large parallel computers.

1. INTRODUCTION

Markovian models are the most widely used technique because of their generality and applica-
bility to model a large class of applications. For modeling the availability of parallel systems
with complex characteristics (complex interactions between components, complex criteria for a
system to be operational, etc.), the number of states grows exponentially (2* states, where n
denotes the number of components). Consequently, the solution of a Markovian model be-
comes intractable; most acceptable techniques tackle this problem via truncation of state space
or aggregation of states [1, 2].

The techniques based on network graphs are simple and can be used to model the availability

of computing systems of reasonably large size. However, the main limitation of this method is
the difficulty in modeling complex system behaviors.

Our approach integrates these two techniques into one hierarchical model that has all the ad-
vantages of these methods but none of their limitations (3, 4]. We use Markovian technique to
model component availabilities which will enable us to take into consideration dependent
failures among components, software failures, performance constraints, etc. At the component
level, the number of states for most system components is relatively small and closed form
solutions are obtainable. At the system level, we use a network graph to describe the interac-
tions and the connectivities among the components of the system.

2. PROPOSED HIERARCHICAL AVAILABILITY MODEL

2.1. Modeling Availability at the Component Level

Figure 1 shows a 4-state Markovian model to evaluate the availability of a processing unit that
takes into consideration the failures caused by hardware and software. The definitions of nota-
tions and states used in this model are as follows:

Ay hardware failure rate from the healthy state.

-2-

A, permanent software failure rate from the healthy state.

A transient software failure rate from the healthy state.

Ay permanent software failure rate from the transient software failure state.

M hardware failure repair rate from the hardware failure state.

K, software failure repair rate from the permanent software failure state.

Hee software fast recovery rate from the transient software failure state.

Hr software recovery rate from the permanent software.

state 0 — correct operation state- the state in which a PU physically operates correctly and has
no software errors.

state 1 — hardware failure state- the state in which a PU failure occurs due to a hardware or
environmental problem. Typical environmental problems are power outages or errors caused
by improper operation of the component. -

state 2 — transient software failure state- the state in which a PU failure occurs due to a tran-
sient software error.

state 3 — permanent software failure state- the state in which a PU failure occurs due to a per-
manent software error.

Hsf
Figure 1. Transition Diagram for the 4-State Markovian Model.

By solving the Markovian model shown in Figure 1, the steady-state availability of a process-
ing unit can be given as

A= p-ho'lfﬂl + [l "’"’nl‘l:f) . (2 1)
o‘h + l"‘h)a':f“: + Wyl + p'np'lf)"' ,"*O':l":f + z’-""a + 3..].1,, + xlld + 1.1,, + 1’1"“-)) :

It is interesting to note that as we omit the failures due to the software (i.e., A,, and 2,), equa-
tion (2.1) is reduced to a two-state Markovian model. That is,

A

My MTTF
T M +Ay MTTF + MTTR' 2.2)

2.2. Modeling Dependent Failures of Components
Most of the techniques developed to analyze availability assume that individual components
fail independently. This tends to significantly simplify the computation even though it is not a

-3-

realistic assumption for some applications (5]. This subsection demonstrates 2 meth.od. to
incorporate the effects of dependent failures into component models by properly mpdxfymg
their failure rates. Consequently, the components at the system level can be assumed indepen-
dent because the failure dependencies have already been accounted for at the component level.

Figure 2. An example of components with failure dependencies.

Figure 2 shows a case of one component m whose failure depends on its own failure rate as
well as on the failure rates of n other components. The effective failure rate that takes into
consideration this type of strong dependency can be given as,

Ede=hn + 3h 2.3)

i=l

where A; denotes the failure rate of component i.

In order to incorporate the effects of any correlation among the components, we introduce a
dependency factor p;, that corresponds to the probability that the failure of component i will
lead to a failure in component m. Hence, the effective failure rate of component m can be
given as,

Edn =t + 3pim M. @.4)

i=l

2.3. Modeling Availability at the System Level

In the following, we use a fault-tolerant database system as an example to demonstrate the use
of network graphs in modeling the system availability. Also, we compare our approach to solve
this example with a Markovian method that gives exact results. Figure 3 shows a model of a
fault-tolerant database system which comprises of the following components: a front-end pro-
cessor, a database, and two processing subsystems formed by a switch, a memory and two pro-
cessors [2]. Table 1 lists the failure and repair rates of these components. It is assumed that
the failure of a processor might contaminate the database subsystem with probability 0.001.
The links connecting these components are assumed to be perfectly reliable.

Front_end

Database

Figure 3. A fault-tolerant database system.

component | Mean Failure Mean Repair Availability
Rate (hours) Rate (hours)

Database 12400 1 0.9995500

Frontend 1/2400 1 0.9995835

Switch 1/2400 1 0.9995835

Memory 1/2400 1 0.9995835

Processor 1/120 1 0.9917355

Table 1. Component failure rates and their availabilities.

The system is considered available (functioning properly) when a transaction (task) initiated
from the front-end processor can successfully access the database subsystem. Hence, the suc-
cess behavior of the system can be described by a probabilistic graph as shown in Figure 4.

/-\ SWITCH-1 MEMORY-1 mmR-A PROCESSOR-B
()

FRONT-END DATABASE
‘ x3 m @_
2 N
SWITCH-2 MEMORY:2 PROCESSOR-A PROCESSOR-B

Figure 4. A network graph for the fault-tolerant database system.

The system availability expression can be obtained directly as,
A (Syﬂﬂ’l) =A1A24A, AlAsAg+ A, (1 -AA5A, As)A7AgAg Ay Ag. (2.5)
where A; denotes the availability of component i.

Discussion

Evaluating the availability of the system shown in Figure 3 using a Markovian method requires
determining and manipulating a state-transition matrix and state space of order 1000 (since
there are 10 components and each one has only two states). The numerical result obtained
without approximation is 0.9988353, as reported by Muntz et al [2].

If a two state-Markovian model is used to represent component behaviors, the component avai-
lability can then be evaluated using Equation 2.2 (obtained by solving a two-state Markovian
model). Since the failure of a processor might lead to a database failure with a probability of
0.001, Equation 2.4 will be used to obtain the effective database failure rate. Once the com-
ponent availabilities have been evaluated, system availability can be computed by substituting
these values in the system availability expression (Equation 2.5). If this is done, the same
result (0.9988355) is obtained by solving a Markovian model without approximation. Also, if
the effect of failure dependencies on the database unit is ignored, the system availability is
0.9988688, which is a reasonable approximation of the solution. The objective of solving this
example using this hierarchical availability model is to demonstrate its simplicity (it tackles
Markovian models with only a few states), accuracy, and potential applicability to analyze the
availability of complex and large computing systems.

3. ANALYZING THE AVAILABILITY OF ALLIANT FX/80 MINISUPERCOMPUTER

The failures of this computer have been recorded for one year (from January 1989 until the
end of December 1989) and will be analyzed to obtain the parameters of the Markovian
models introduced in Section 2.1. The observed failures can be classified into four different
types:

1. Type 1 — hardware and environmental failure.

This type of failure is caused by power outages and other hardware related failures. Table 2
shows all the information relevant to this failure type, including the occurrence of a failure
time to failure (TTF), time to repair it (TTR), mean time to failure (MTTF), and mean time to

repair (MTTR)

Date Time Time TIR TIF
went down | brought up | minutes | minutes
01-26 04:40 10:40 360
03-14 05:30 06:40 070 67370
03-14 06:50 10:00 190 00010
05-15 |- 06:30 09:30 180 89070
05-22 06:00 08:30 150 09870
07-25 06:45 09:15 150 92055
08-27 02:45 08:00 315 47130
08-29 18:25 19:15 050 0350s
10-19 17:30 18:15 045 73335
MTTF: 47,793 MTTR: 167.8

Table 2. Hardware and Environmental Failures.

2. Type 2— transient software failure.

This failure occurs when the system hangs up (no more users can login to the system, but
users already logged-in are not affected by this failure). The recovery procedure for this type is
simple and usually takes less than 30 minutes. Table 3 shows all the information related to this
failure type.

Date Time Time TTR TTF
went down | brought up | minutes | minutes
01-17 12:55 13:15 20
01-20 09:30 09:50 20 004095
04-24 09:00 09:26 26 135310
07-22 09:00 09:10 10 128134
09-01 09:25 09:40 15 . 057615
09-22 16:15 16:35 20 030635
11-16 14:30 14:45 15 079075
11-17 14:30 14:45 15 001425
MTTF: 62,327 MTTR: 17.63

Table 3. Transient software failures.

3. Type 3— semi-permanent software failure.

This failure occurs when the transient software failure leads to a permanent software failure.
The recovery procedure is done by partially recovering the system from the permanent failure
state to the transient software failure state. At this point, a fast recovery is applied to move the
system to the healthy state. The total recovery time varies between 30 and 60 minutes. Table 4
shows all the information related to this failure type.

Date Time Time TIR TTF

went down | brought up | minutes | minutes

01-04 10:40 11:10 30

01-04 11:30 12:15 45 000020

01-13 15:20 16:00 40 013145

05-18 08:00 08:30 30 179520

06-07 13:15 14:05 50 027645

11-02 08:40 09:16 36 212795
MTTF: 86,625 MTTR: 38.50

Table 4. Semi-permanent software failures.

4. Type 4— permanent software failure.

This failure moves the system directly to a single user mode (a crash state). The system can be
recovered only by shutting it down and booting it up again. The recovery procedure takes more
than 60 minutes. Table 5 shows all the information relevant to this failure type.

Date Time Time TIR TTF
went down | brought up | minutes minutes
04-07 10:00 11:02 0062
04-10 12:30 13:30 0060 04408
04-17 10:00 11:00 0060 04870
04-24 12:00 13:30 0090 10140
06-18 08:00 12:00 0240 78870
07-07 17:00 19:25 0145 27660
07-18 13:18 . 15:00 0102 15473
07-18 22:00 23:45 0105 00420
07-27 08:00 10:30 0150 12015
09-06 11:15 12:15 0060 59085
09-17 14:00 07:25 1055 15945
09-20 16:45 07:45 0900 03440
11-06 10:10 11:12 0062 66385
11-09 08:50 10:00 0070 05618
11-17 09:20 10:50 0090 11480
12-14 09:35 11:05 0090 38805
12-21 10:00 17:00 1860 10015
MTTF: 23,102 MTTR: 306

Table 5. Permanent software failures.

3.1. Evaluating Component Avai

The mean failure rates shown in Tables 2-5 will be used to evaluate the component availabili-

labilities

ties. It is also assumed that the memory units

bus, and the ACE-switch can be modeled using o
Equation 2.2 can be used to evaluate their availabilities. These components experience only
the processing units (IPs and ACEs)
refore, model developed in Section
This availability can be computed
hown in Tables 2-5 in Equation 2.1. Table 6 shows the mean time
ailabilities of the Alliant FX/80

hardware and environmental failures (Type 1). However,
software failures (Types 1-4). The
ate the processing unit availabi
by substituting the means s
to failure (MTTF), mean time to repair (

experience hardware and
2.1 can be used to evalu

components.

(main memory and cache subsystems), memory

MTTR), and the av

ility.

nly a two-state Markovian model and thus,

component name MTTF MTTR | availability
(hours) | (hours)

Memory, Cache 796.55 2.80 0.99650
Switch, Bus 796.55 2.80 0.99650

I I I I I I I 1 e

component o —u:- . L o ™ Ay oy availability

name (hours) | (hours) | (hours) | (hours) (hours) | (hours) | (hours) | (hours)
CE, IP 796.6 2.80 385 5.10 1038.8 0.29 14438 0.64 0.99408

Table 6. Component availabilities of Alliant FX/80.

32. Evaluating System Availability

Once the component availabilities have been evaluated, the next step is to describe the system
behavior by a network graph. If we assume that the system is not available when at least one
component is down, then system availability is a direct product of all its component availabili-
ties, as illustrated in the following equation :

A (FX/80) = I1 A; =0.897969.
Jor ail componens i

OO
D&
S

caga

® =)
OGOt

Figure S. A network graph for Alliant FX/80.

However, the system can be operational with degraded performance when at least one
configuration (IP, ACE, IP-cache, ACE-cache, memory system, and memory bus) is in opera-
tional state. The network graph corresponding to this system is shown in Figure S; the system
availability expression is,

A (FX730) = (1= Up®) Ascie (1=Ucz®) (1= Upsce) Amaisch At A [1+ Uruche + Acecie Upp®]
where U; denotes the unavailability of component i which is equal to 1 - 4;.

If the component availabilities are substituted in the above equation, this yields a system avai-
lability equal to 0.989516. In this section we demonstrated the applicability of the proposed
model to analyze the availability of a parallel computer. If a Markovian model is used to solve
this example without approximation, the state space can be of order one million states and this
makes it infeasible to construct the state transition matrix and solve this Markovian chain.
This limitation has been eliminated in the proposed hierarchical model, and thus can be used to
model larger and more complex parallel computers.

4. SUMMARY AND CONCLUDING REMARKS
A hierarchical availability model has been proposed to analyze the availability of parallel

-9.

computers. At the component level, Markovian models are used to model sophisticated depen-
dability measures that take into account software and hardware failures and some performance
constraints. At the system level, the system is modeled as a probabilistic graph so that any
efficient availability algorithm developed for communication networks can also be used to
evaluate the overall system availability. The availability of a fault-tolerant database system
evaluated by other methods has been solved by our model to demonstrate the simplicity, vali-
dity, accuracy, and potential applicability to analyze large parallel computers.

5. ACKNOWLEDGEMENT

This work was conducted using the computational resources of the Northeast Parallel Architec-
tures Center (NPAC) at Syracuse University, which is funded by and operates under contract to
DARPA, and the Air Force Systems command, Rome Air Development Center (RADC),
Griffiss AFB, Rome, NY, under contract #F30602-88-C-0031. We also like to thank the
Director and Deputy Director of NPAC for supporting this work and the NPAC Computer
Operations Staff for providing the data used in this research.

6. REFERENCES

(1] R. Johnson, "Network Reliability and Acyclic Orientation," Networks, Vol. 14, pp. 489-
50s.

(2] R. Muntz, E. Silva, and A. Goyal, "Bounding Availability of Repairable Computer Sys-
tems," IEEE Transactions on Computers, December 1989, Vol. 38, pp. 1714-1723.

(3] S. Hariri, A. G. Mohamed, and H. B. Mutlu, "Modeling Availability of Parallel Comput-
ers,” ICPP 1990 Proceedings, August 1990, Vol. I, pp. 559-560.

[4] S. Hariri, C. S. Raghavendra, "SYREL: A Symbolic Reliability Algorithm based on Path
and Cutset Methods," IEEE Transactions on Computers, October 1987, Vol. C-36, pp. 1224-
1232.

(5] S. N. Pan and J. Spragins, Dependence Failure Reliability Models for Tactical Communica-
tions Network," IEEE Proceedings of the International Conference on Communications, June
1983, pp. C5.5.1-7.

