Interprocedural Transformations
for Parallel Code Generation

Mary Hall
Ken Kennedy
Kathryn McKinley

CRPC-TR91149
April, 1991

Center for Research on Parallel Computation
Rice University
P.O. Box 1892
Houston, TX 77251-1892
Interprocedural Transformations for Parallel Code Generation

Mary W. Hall Ken Kennedy Kathryn S. McKinley
Department of Computer Science, Rice University, Houston, TX 77251-1892

Abstract
We present a new approach that enables compiler optimization of procedure calls and loop nests containing procedure calls. We introduce two interprocedural transformations that move loops across procedure boundaries, exposing them to traditional optimizations on loop nests. These transformations are incorporated into a code generation algorithm for a shared-memory multiprocessor. The code generator relies on a machine model to estimate the expected benefits of loop parallelization and parallelism-enhancing transformations. Several transformation strategies are explored and one that minimizes total execution time is selected. Efficient support of this strategy is provided by an existing interprocedural compilation system. We demonstrate the potential of these techniques by applying this code generation strategy to two scientific applications programs.

1 Introduction
Modern computer architectures, such as pipelined, superscalar, VLIW and multiprocessor machines, demand sophisticated compilers to exploit their performance potentials. To expose parallelism and computation for these architectures, the compiler must consider a statement in light of its surrounding context. Loops provide a proven source of both context and parallelism. Loops with significant amounts of computation are prime candidates for compilers seeking to make effective utilization of the available resources. Given that increased modularity is encouraged to manage program computation and complexity, it is natural to expect that programs will contain many procedure calls and procedure calls in loops, and the ambitious compiler will want to optimize them.

Unfortunately, most conventional compiling systems abandon parallelizing optimizations on loops containing procedure calls. Two existing compilation technologies are used to overcome this problem: interprocedural analysis and interprocedural transformation.

Interprocedural analysis applies data-flow analysis techniques across procedure boundaries to enhance the effectiveness of dependence testing. A sophisticated form of interprocedural analysis, called regular section analysis, makes it possible to parallelize loops with calls by determining whether the side effects to arrays as a result of each call are limited to nonintersecting subarrays on different loop iterations [12, 20].

Interprocedural transformation is the process of moving code across procedure boundaries, either as an optimization or to enable other optimizations. The most common form of interprocedural transformation is procedure inlining. Inlining substitutes the body of a called procedure for the procedure call and optimizes it as a part of the calling procedure.

Even though regular section analysis and inlining are frequently successful, each of these methods has its limitations [20, 23]. Compilation time and space considerations require that regular section analysis summarize array side effects. In general, summary analysis for loop parallelization is less precise than the analysis of inlined code. On the other hand, inlining can yield an explosion in code size which may disastrously increase compile time and seriously inhibit separate compilation [13]. Furthermore, inlining may cause a loss of precision in dependence analysis due to the complexity of the operation of the loop expression from array parameter reuses. For example, when the dimension size of a formal array parameter is also passed as a parameter, translating references of the formal to the actual can introduce multiplications of unknown symbolic values into subscript expressions. This situation occurs when inlining is used on the SPEC Benchmark program matrix300 [8].

In this paper, a hybrid approach is developed that overcomes some of these limitations. We introduce a pair of new interprocedural transformations: loop embedding, which pushes a loop header into a procedure called within the loop, and loop extraction, which extracts the outermost loop from a procedure body into the calling procedure. These transformations expose such loops to intraprocedural optimizations. In this paper, the intraprocedural optimizations considered are loop fusion, loop interchange and loop distribution. However, many other transformations that require loop nests will also benefit from embedding and extraction. Some examples are loop skewing [36] and memory hierarchy optimizations such as unroll and jam [10].

As a motivating example, consider the Fortran code in Example 1(a). The J loop in subroutine S may be made parallel, but the outer I loop in subroutine P may not. However, the amount of computation in the J loop is small relative to the I loop and may not be sufficient to make parallelization profitable. If the I loop is embedded into subroutine S as shown in (b), the

*This research was supported by the Center for Research on Parallel Computation, a National Science Foundation Science and Technology Center, by IBM Corporation, the state of Texas and by a DARPA/NASA Research Assistantship in Parallel Processing, administered by the Institute for Advanced Computer Studies, University of Maryland.
SUBROUTINE P
REAL A(M,N)
INTEGER I
DO I = 1, 100
CALL S(A)
ENDDO
SUBROUTINE S(F,I)
REAL F(N,N)
INTEGER I,J
DO J = 1,3
F(J,I) = F(J,I-1) + 10
ENDDO
(a) before transformation
(b) loop embedding
(c) loop interchange

Example 1:

inner and outer loops may be interchanged as shown in (c). The resulting parallel outer J loop now contains plenty of computation. As an added benefit, procedure call overhead has been reduced.

Loop embedding and loop extraction provide many of the optimization opportunities of inlining without its significant costs. Code growth of individual procedures is nominal, so compilation time is not seriously affected. Overall program growth is also moderate because multiple callers may invoke the same optimized procedure body. In addition, the compilation dependences among procedures are reduced since the compiler controls the small amount of code movement across procedures and can easily determine if an editing change of one procedure invalidates other procedures.

Our approach to interprocedural optimization is fundamentally different from previous research in that the application of interprocedural transformations is restricted to cases where it is determined to be profitable. This strategy, called goal-directed interprocedural optimization, avoids the costs of interprocedural optimization when it is not necessary[8]. Interprocedural transformations are applied as dictated by a code generation algorithm that explores possible transformations, selecting a choice that minimizes total execution time. Estimates of execution time are provided by a machine model which takes into account the overhead of parallelization. The code generator is part of an interprocedural compilation system that efficiently supports interprocedural analysis and optimization by retaining separate compilation of procedures.

The remainder of this paper is organized into five major sections, related work, and conclusions. Section 2 provides the technical background for the rest of the paper. In Section 3, a compilation system is described which is powerful enough to support interprocedural optimization but also retains the advantages of a separate compilation system. Section 4 explains the interprocedural and intraprocedural transformations in more detail, and Section 5 presents a code generation algorithm that uses these to parallelize programs for a shared-memory multiprocessor. Section 6 describes an experiment where this approach was applied to the Perfect Benchmark programs spec77 and ocean.

2 Technical Background

2.1 Dependence Analysis

Dependence analysis and testing have been widely researched, and in this paper a working knowledge of these is assumed [3, 7, 9, 17, 18, 27, 37]. In particular, the reader should be familiar with dependence graphs, where dependence edges are characterized with such information as dependence type and hybrid direction/distance vectors [25]. The dependence graph specifies a conservative approximation of the partial order of memory accesses necessary to preserve the semantics of a program. The safe application of program transformations is based on preserving this partial order.

2.2 Augmented Call Graph

The program representation for interprocedural transformations requires an augmented call graph to describe the calling relationship among procedures and specify loop nests. The code generation algorithm considers loops containing procedure calls and loops adjacent to procedure calls. For this purpose, the program's call graph, which contains the usual procedure nodes and call edges, is augmented to include special loop nodes and nesting edges. If a procedure p contains a loop l, there will be a nesting edge from the procedure node representing p to the loop node representing l. If a loop l contains a call to a procedure p, there will be a nesting edge from l to p. Any inner loops are also represented by loop nodes and are children of their outer loop. The outermost loop of each routine is marked enclosing if all the other statements in the procedure fall inside the loop. Figure 1(a) shows the augmented call graph for the program from Example 1.

2.3 Regular Section Analysis

A regular section describes the side effects to the substructures of an array. Sections represent a restricted set of the most commonly occurring array access patterns; single elements, rows, columns, grids and their higher dimensional analogs. This restriction on the shapes assists in making the implementation
3 Support for Interprocedural Optimization

In this section, we present the compilation system of the ParaScope Programming Environment [11, 14]. This system was designed for the efficient support of interprocedural analysis and optimization. The tools in ParaScope cooperate to enable the compilation system to perform interprocedural analysis without direct examination of source code. This information is then used in code generation to make decisions about interprocedural optimizations. The code generator only examines the dependence graph for the procedure currently being compiled, not the graph for the entire program. In addition, ParaScope employs recompilation analysis after program changes to minimize program reanalysis [15].

3.1 The ParaScope Compilation System

Interprocedural analysis in the ParaScope compilation system consists of two principal phases. The first takes place prior to compilation. At the end of each editing session, the immediate interprocedural effects of a procedure are determined and stored. For example, this information includes the array sections that are locally modified and referenced in the procedure. The procedure’s calling interface is also determined in this phase. It includes descriptions of the calls and loops in the procedure and their relative positions. In this way, the information needed from each module of source code is available at all times and need not be derived on every compilation.

Interprocedural optimization is orchestrated by the program compiler, a tool that manages and provides information about the whole program [14, 19]. The program compiler begins by building the augmented call graph described in Section 2.2. The program compiler then traverses the augmented call graph, performing interprocedural analysis, and subsequently, code generation. Conceptually, program compilation consists of three principal phases: (1) interprocedural analysis, (2) dependence analysis, and (3) planning and code generation.

Interprocedural analysis. The program compiler calculates interprocedural information over the augmented call graph. First, the information collected during editing is recovered from the database and associated with the appropriate nodes and edges in the call graph. This information is then propagated in a top-down or bottom-up pass over the nodes in the call graph, depending on the interprocedural problem. Section analysis is performed at this time. Interprocedural constant propagation and symbolic analysis are also performed, as these greatly increase the precision of subsequent dependence analysis.

Dependence analysis. Interprocedural information is then made available to dependence analysis, which is performed separately for each procedure. Dependence analysis results in a dependence graph. Edges in the dependence graph connect statements that form the source and sink of a dependence. If the source or sink of a dependence is a call site, a sec-
The section may more accurately describe the portion of the array involved in the dependence. Dependence analysis also distinguishes parallel loops in the augmented call graph. Dependence analysis is separated from code generation for an important reason; it provides the code generator knowledge about each procedure without reexamining their source or dependence graph.

Planning and Code Generation. The final phase of the program compiler determines where interprocedural optimization is profitable. When more than one option for interprocedural transformation exists, it selects the most profitable option. Planning is important to interprocedural optimization since unnecessary optimizations may lead to significant compile-time costs without any execution-time benefit. To determine the profitability of transformations requires a machine model. To determine the safety of transformations, the dependence graph and sections are sufficient. Once profitable transformations are located, they are applied and parallelism is introduced in the transformed program.

The relationship among the compilation phases is depicted in Figure 2. Each step adds annotations to the call graph that are used by the next phase. Following program transformation, each procedure is separately compiled. Interprocedural information for a procedure is provided to the compiler to enhance *intraprocedural* optimization.

3.2 Recompilation Analysis

A unique part of the ParaScope compilation system is its recompilation analysis, which avoids unnecessary recompilation after editing changes to the program. Recompilation analysis tests that interprocedural facts used to optimize a procedure have not been invalidated by editing changes [15]. To extend recompilation analysis for interprocedural transformations, a few additions are needed. When an interprocedural transformation is performed, a description of the interprocedural transformations annotates the nodes and edges in the augmented call graph. On subsequent compilations, this information indicates to the program compiler that the same tests used initially to determine the safety of the transformations should be reapplied.

To determine if interprocedural transformations are still safe, the new and old sections are first compared, in most cases avoiding examination of the dependence graph. This means that dependence analysis is only applied to procedures where it is no longer valid, allowing separate compilation to be preserved. The recompilation process after interprocedural transformations have been applied is described in more detail elsewhere [19].

4 Interprocedural Transformation

We introduce two new interprocedural transformations, loop extraction and loop embedding. These expose the loop structure to optimization without incurring the costs of inlining. The movement of a single loop header is detailed below. Moving additional statements that precede or are enclosed by a loop is a straightforward generalization of these two transformations and for simplicity is not described. This section also describes the additional information needed to perform the applicability and safety tests for loop fusion and loop interchange across call boundaries. All of these are used in our code generation algorithm. The code generation algorithm also uses loop distribution, but does not apply it across call boundaries. Therefore, it may be performed with no additional information. Loop distribution is discussed in detail in Section 5.2.

4.1 Loop Extraction

Loop extraction moves an enclosing loop of a procedure p outward into one of its callers. This optimization may be thought of as partial inlining. The new version of p no longer contains the loop. The caller now contains a new loop header surrounding the call to p. The index variable of the loop, originally a local in p, becomes a formal parameter and is passed at the call. The calling procedure creates a new variable to serve as the loop index, avoiding name conflicts. It is always safe to extract an outer enclosing loop from a procedure. Example 2(a) contains a loop with two calls to procedure S and (b) contains the result after loop extraction. Note that (b) has an additional variable declaration for the loop index J in P. It is included in the actual parameter list for S. In this example, the J loop may now be fused and interchanged to improve performance.

4.2 Loop Embedding

Loop embedding moves a loop that contains a procedure call into the called procedure and is the dual of loop extraction. The new version of the called procedure requires a new local variable for the loop's index variable. If a name conflict exists, a new name for the loop's index variable must be created. This transformation is illustrated in Example 1.
4.3 Loop Fusion

Loop fusion places the bodies of two adjacent loops with the same number of iterations into a single loop [1]. When several procedure calls appear contiguously or loops and calls are adjacent, it may be possible to extract the outer loop from the called procedure(s), exposing loops for fusion and further optimization. In the algorithm checkFusion, we consider fusion for an ordered set $S = \{s_1, \ldots, s_p\}$, where s_i is either a call or a loop. There cannot be any intervening statements between s_i and s_{i+1} and each call must contain an enclosing loop which is being considered for fusion.

Fusion is safe for two loops l_1 and l_2 if it does not result in values flowing from the statements in l_2 back into the statements in l_1 in the resultant loop and vice versa. The simple test for safety performs dependence testing on the loop bodies as if they were in a single loop. Each forward dependence originally between l_1 and l_2 is tested. Fusion is unsafe if any dependences are reversed, becoming backward loop-carried dependences in the fused loop.

This test requires the inspection of the dependence source and sink variable references in l_1 and l_2. If one or more of the loops is inside a call, the variable references are represented instead as the modified and referenced sections for the call. The slices that annotate the sections correspond to the loops being considered for fusion and are tested identically to variable references (see Section 2.3). Unfortunately, while variable references are always exact, a section and its slice are not. If the slice is not exact, fusion is conservatively assumed to be unsafe. To be more precise would require the inspection of the dependence graphs for each called procedure, possibly a significant overhead.

```
checkFusion (S)
/* Input: S = {s_1, ..., s_p}; s_i is a call or a loop */
/* s_i is adjacent to s_{i+1} */
/* Output: returns true if fusion is safe \forall s_i */
F = \{s_1\}
for i = 2 to n
  let l_i = the loop header of s_i
  if the number of iterations of l_i differ from F then
    return false
  for each forward dependence (src, sink)
    if src or sink is not exact then
      return false
    if (src, sink) becomes backward loop-carried then
      return false
  endfor
  F = F \cup \{s_i\}
endfor
return true
```

4.4 Loop Interchange

Loop interchange of two nested loops exchanges the loop headers, changing the order in which the itera-
tion space is traversed. It is used to introduce parallelism or to adjust granularity of parallelism. In particular, when a loop containing calls is not parallel or parallelizing the loop is not profitable, it may be possible to move parallel loops in the called procedures outward using loop interchange as in Examples 1 and 2. The safety of loop interchange may be determined by inspecting the distance/direction vector to ensure that no existing dependence is reversed after interchange [3, 37].

Our algorithm considers loop interchange only when a perfect nest can be created via loop extraction, embedding, fusion, and distribution. If a loop contains more than one call, it may be possible to fuse the outer enclosing loops of calls to create a perfect nest. Even if there are multiple statements and calls, it may be possible to use loop distribution to create a perfect nest. If a perfect nest may be safely created, testing the safety of interchange simply requires inspection of the direction vectors and slices for dependences between calls or statements in the nest.

5 Interprocedural Parallel Code Generation

In this section we present an algorithm for the interprocedural parallel code generation problem. This algorithm moves loops across procedure boundaries when other transformations such as loop fusion, interchange, and distribution may be applied to the resulting loop nests to introduce or improve single-level loop parallelism. The goal of this algorithm is to only apply transformations which are proven to minimize execution time for a particular code segment. To determine the minimum execution time of a code segment, a simple machine model is used. This model includes the cost of arithmetic and conditional statements as well as operations such as parallel loops, sequential loops, and procedure call overhead. Both Polychronopoulos and Sarkar have used similar machine models in their research [33, 34].

5.1 Machine Model and Performance Estimation

A cost model is needed to compare the costs of various execution options. First, a method for estimating the cost of executing a sequential loop is presented. Consider the following perfect loop nest, where \(w_1, \ldots, w_n \) are constants and \(B \) is the loop body.

\[
\begin{align*}
\text{DO} & \quad i_1 = 1, \ w_1 \\
& \quad \ldots, \ w_n \\
& \quad B \\
& \text{ENDDO}
\end{align*}
\]

In order to estimate the cost of running this loop on a single processor, a method for estimating the running time of the loop body is needed. If \(B \) consists of straight-line code, simply sum the time to execute each statement in the sequence. To handle control flow, we assume a probability for each branch and compute the weighted mean of the branches. Once the sequential running time of the loop body \(t(B) \) is computed, then the running time for the inner loop is given by the formula:

\[w_n(t(B) + o), \]

where \(o \) is the sequential loop overhead. The running time for the entire loop nest is then given by the following:

\[w_1(\ldots(w_n(t(B) + o)\ldots) + o). \]

In order to estimate the running time of a parallel loop, we need to take into account any overhead introduced by the parallel loop. Our experiments on uniform shared-memory machines indicate that this overhead consists of a fixed cost \(c_f \) of starting the parallel execution and a cost \(c_f \) of forking and synchronizing each parallel process. If there are \(P \) parallel processors, an estimate of the cost of executing the inner loop of the above example in parallel is given by the equation

\[c_f + c_f P + \left[\frac{w_n}{P} \right] (t(B) + o). \]

This formula assumes that the iterations are divided into nearly equal blocks at startup time and the overhead of an iteration \(o \) remains the same. Given a perfect loop nest where just one loop is being considered for parallel execution, these two formulae may be generalized to compute the expected sequential and parallel execution time. If the parallel execution time is less than the sequential execution time, it is profitable to run the loop in parallel.

To enable the parallel code generator to compare the costs of different transformation choices, we introduce the following cost function:

\[\text{cost}(\mathcal{L}, \text{how}, B), \]

where

\[\mathcal{L} = \{l_1, \ldots, l_n\}, \] a perfect loop nest

\[\text{how} \] indicates whether \(l_n \) is parallel (||) or sequential

\[B = \] the loop body

The function \(\text{cost} \) estimates the running time of a loop nest \(l_1, \ldots, l_n \), where the inner loop \(l_n \) is specified as either parallel or sequential, and all outer loops are sequential. The loop body \(B \) may contain any types of statements, including calls and inner loop nests.

5.2 Code Generation Algorithm

The goal of our interprocedural parallel code generation algorithm is to introduce effective loop parallelism for programs which contain procedure calls and loops. This algorithm applies the following transformations: loop fusion, loop interchange, loop distribution, loop embedding, loop extraction, and loop parallelization. These transformations are applied at call sites and for a loop nest containing call sites. The algorithm seeks a minimum cost single loop parallelization based on performance estimates.

Potential loop and call sequences that may benefit from these interprocedural transformations are adjacent procedure calls, loops adjacent to calls, and loop nests containing calls. To find candidates for interprocedural optimization, the augmented call graph is traversed in a top-down pass. If a candidate benefits
BestCost \((S, \mathcal{L}) \)

\[
\text{/* Input: a set of statements } S = \{s_1, \ldots, s_p\} \text{ in perfect loop nest } \mathcal{L} = \{l_1, \ldots, l_n\} \text{ */}
\]

\[
\text{/* Output: a tuple } (\tau, T) \text{, where } \tau \text{ is the minimum execution time and } T \text{ the set of transformations that result in } \tau \text{ */}
\]

\[
(\tau, T) = (\text{cost}(\mathcal{L}, \text{sequential}, S), \emptyset)
\]

if \((\mathcal{L} = \emptyset) \) then

if (checkFusion\((S) \) & (fused loop \(l_f \) is ||)) then

\[
(\tau, T) = \min((\text{cost}(l_f, ||, body(l_f)), \{\text{fuse, make } l_f ||\}), (\tau, T))
\]

return \((\tau, T) \)
endif

for (i = 1, n)

if \((l_i \text{ is ||}) \) then

\[
(\tau, T) = \min((\text{cost}(\{l_1, \ldots, l_i\}, ||, body(l_i)), \{\text{make } l_i ||\}), (\tau, T))
\]

if \(i \neq n \) then return \((\tau, T) \)
endif
endfor

if (checkFusion\((S) \)) then

if (fused loop \(l_f \) is ||) then

if (checkInterchange\((l_n, l_f) \) & \(l_f \text{ is || after interchange} \)) then

(1) \[
(\tau, T) = \min((\text{cost}(\{l_1, \ldots, l_{n-1}, l_f\}, ||, body(l_f)), \{\text{fuse, interchange, make } l_f ||\}), (\tau, T))
\]

else

(2) \[
(\tau, T) = \min((\text{cost}(\{l_1, \ldots, l_n, l_f\}, ||, body(l_f)), \{\text{fuse, make } l_f ||\}), (\tau, T))
\]

else if \((l_n \text{ is } \tau ||) \) & \((\text{checkInterchange}\{l_n, l_f\}) \) & \((l_n \text{ || after interchange}) \) then

(3) \[
(\tau, T) = \min((\text{cost}(\{l_1, \ldots, l_{n-1}, l_f, l_n\}, ||, body(l_f)), \{\text{fuse, interchange, make } l_n ||\}), (\tau, T))
\]
endif

return \((\tau, T) \)
}

from interprocedural transformation, the transformations are performed and no further optimization of that call sequence is attempted. Additional candidates for optimization may be created by using judicious code motion and loop coalescing (combining nested loops into a single loop)[33].

BestCost Algorithm

BestCost considers \(\mathcal{L} = \{l_1, \ldots, l_n\} \) a perfect loop nest with body \(S = \{s_1, \ldots, s_p\} \), where \(l_n \) is the innermost loop and \(L \) may be the empty set \(\emptyset \). \(S \) consists of at least one call and may also contain other statements such as loops, control flow, and assignments.

The **BestCost** algorithm makes use of loop parallelization, fusion, interchange, extraction, and embedding (loop distribution is excluded) to determine a tuple \((\tau, T)\), such that \(\tau \) is the best execution time and \(T \) specifies the transformations needed to obtain this time. Unfortunately, finding the best ordering of a loop nest via loop interchange requires that all possible permutations (\(n! \)) be considered. Therefore to restrict the search space and simplify this presentation, **BestCost** only considers loop interchange of \(l_n \) the innermost nest and \(l_f \) the result of fusing \(S \). However, opportunities to test various interchange strategies are pointed out in the text.

The sequential execution time is computed first \((T = \emptyset)\). If there is no surrounding loop nest \((\mathcal{L} = \emptyset)\), \(S \) may be a group of adjacent calls and loops that can be fused. If fusion of all members of \(S \) is possible and produces a parallel loop, its execution time is computed and compared to the sequential cost using the function \(\min \). The function \(\min \) assigns \(\tau \) the minimum of the two times, and \(T \) the corresponding program transformation. If \(\mathcal{L} \neq \emptyset \), other transformations are considered as follows.

First, the outermost parallel loop of \(\mathcal{L} \) is sought and compared with the sequential time. If any of \(l_1 \ldots l_{n-1} \) are parallel, **BestCost** returns. Loop interchange outward of any of these parallel loops could also be considered. Otherwise, if all of \(S \) fuses into \(l_f \), three transformations on \(l_f \) and \(l_n \) are considered.

1. Interchanging a parallel \(l_f \) with \(l_n \) to make a parallel loop with increased granularity.
2. A parallel \(l_f \) in its current position.
3. Interchanging \(l_n \) and \(l_f \) to introduce inner loop parallelism.

Case 1 is illustrated in Examples 1 and 2. Further interchanging of \(l_f \) to enable a more outer loop to be parallel may also be tested here.

Embedding versus Extraction

To apply the set of transformations specified by \((\tau, T)\), the loops involved may need to be placed in the same routine. In particular, if \(T \) specifies interchange or fusion across a call then one of embedding or extraction must be applied. If there is only one call, then embedding loop \(l_n \) into the called procedure is preferable because it reduces procedure call overhead. If there is more than one call and \(T \) requires fusion, extraction from all the calls is performed. Fusion, inter-
change, and parallelization may then be performed on the transformed loops.

Loop Distribution
If $BestCost(\mathcal{L}, S)$ cannot introduce parallelism, then it may be possible to use loop distribution to do so. Loop distribution seeks parallelism by separating independent parallel and sequential statements in \mathcal{L}. For example, loop distribution may create loop nests of adjacent calls and loops which $BestCost$ can optimize.

Ordered Partitions. Loop distribution is safe if the partition of statements into new loops preserves all of the original dependences [24, 32]. Dependences are preserved if any statements involved in a cycle of dependences, a recurrence, are placed in the same loop (partition). The dependences between the partitions form an acyclic graph that can always be ordered using topological sort [3, 28].

By first choosing a safe partition with the finest possible granularity and then grouping partitions, larger partitions may be formed. Any one of these groupings may expose the optimal parallelization of the loop. Unfortunately, there exists an exponential number of possible groupings [2].

To limit the search space, statement order is fixed based on a topological sort of all the dependences for \mathcal{L}. Ambiguities are resolved in favor of placing parallel partitions adjacent to each other. The advantage of this ordering is that loop-carried anti-dependences may be broken, allowing parallelism to be exposed.

Grouping partitions via dynamic programming. A dynamic programming solution is used to compute the best grouping for the finest granularity ordered partitions. This algorithm is similar to techniques for calculating the shortest path between two points in a graph [31]. The algorithm is $O(N \cdot M^3)$. N is the number of perfectly nested loops. M is the maximum number of partitions and is less than or equal to the number of statements in the loop. Both N and M are typically small numbers.

The dynamic programming solution appears in Figure 3. The algorithm begins by finding the finest partition for the inner loop l_i that satisfies its own dependences and the ordering constraints. On subsequent iterations, the initial partition is further constrained by including the dependences for the next outer loop. Since an inner loop may have more partitions than its enclosing loop, a map is constructed that correlates a statement's partition for the previous and current iteration; $map(j)$ returns the partition from l_{i+1} that corresponds to π_j in l_i.

For each loop level, $BestCost$ calculates the best execution time of each possible grouping of partitions. The grouping algorithm first tests the finest partition and then each pair of adjacent partitions. Increasingly larger groupings of partitions are tested for a particular loop level. At each level, the minimal execution time for each grouping analyzed is stored. The minimal grouping time is taken from the grouping at this level, as well as that of the previous inner loops. This strategy allows inner loop distributions to be used within an outer loop distribution to minimize overall execution time. On completion, the best execution time for the grouping of the entire loop nest is determined.

Each time the algorithm locates a grouping of partitions that improves execution time, a set D is constructed to describe how partitions are grouped together. For a loop l_i, $D_{i,m}$ provides the best grouping of partitions at loop l_i. Upon termination of the algorithm, $D_{i,m}$ indicates the final grouping with the minimal cost. Implicit in D is also a description of any additional transformations specified by $BestCost$.

Improvements. To leverage the dynamic programming solution, the distribution algorithm generates partitions based on a fixed statement order that satisfies all the dependences. A correct and less restrictive statement order uses only the dependences for the particular loop nest being distributed. In general, this ordering causes the map between solutions for adjacent loop partitions to be useless. It provides a single best solution for each nesting level of distribution instead of one overall best solution. In practice, experimentation will be needed to differentiate these strategies.
6 Experimental Validation

This section presents significant performance improvements due to interprocedural transformation on two
scientific programs, spec77 and ocean, taken from the
Perfect Benchmarks[16]. Spec77 contains 3278 non-comment lines and is a fluid dynamics weather sim-
ulation that uses Fast Fourier Transforms and rapid
elliptic problem solvers. Ocean has 1902 non-comment lines and is a 2-D fluid dynamics ocean simulation that
also uses Fast Fourier Transforms.

To locate opportunities for transformations, we
browsed the dependences in the program using the
ParaScope Editor [6, 25, 26]. Using other ParaScope
tools, we determined which procedures in the program
contained procedure calls. We examined the pro-
dcedures containing calls, looking for interesting call struc-
tures. We located adjacent calls, loops adjacent to
calls, and loops containing calls which could be opti-
mized.

The rest of this section describes our experiences exec-
ting these programs on a 20-processor Sequent Sym-
metry S81. Since the optimizations used and the exper-
imental methodology differed slightly for each program,
they are described separately.

6.1 Optimizing spec77

In spec77, loops containing calls were common. Over-
all, transformations were applied to 19 such loops.
Embedding and interchange were applied to 8 loops
which contained calls to a single procedure. The re-
maining 11 loops, which contained multiple procedure
calls, were optimized using extraction, fusion and in-
terchange. These loops were found in procedures dell,
gloop and gwater.

For the 19 transformed loops, performance was mea-
sured among three possibilities: (1) no parallelization of
loops containing procedure calls, (2) parallelization
using interprocedural information, and (3) inter-
procedural information and transformations. To ob-
tain these versions, the steps illustrated in Figure 4
were performed.

The Original version contains directives to parallelize
the loops in the leaf procedures that are invoked by the
19 loops of interest. The IPinfo version parallels the
19 loops containing calls. For the IPtrans version, we
performed interprocedural transformation followed by
outer loop parallelization. The parallel loops in each
version were also blocked to allow multiple consecutive
iterations to execute on the same processor without
synchronization. The compiler default is to create a
separate process for each iteration of a parallel loop.

The results reported above are the best execution
time in seconds for the optimized portions of each ver-
sion. The speedups are compared against the execution
time in the optimized portion of the program on a sin-
gle processor, which was 463.7s. This accounted for
more than 21 percent of the total sequential execution
time.

With seven processors, the results are similar for all
three versions, since each program version provided ad-
quate parallelism and granularity for seven processors.
On 19 processors, IPinfo was slower than the original
program because the parallel outer loops had insufficient parallelism — only 7 to 12 iterations. The par-
allel inner loops of Original were better matched to the
number of processors because they had at least 31 it-
erations. The interprocedural transformation version
IPtrans demonstrated the best performance, a speedup of
12.7, because it combined the amount of parallelism in Original with increased granularity. The inter-
procedural transformations resulted in a 21 percent
improvement in execution time over Original in the opti-
mized portion.

Parallelizing just these 19 loops resulted in a speedup
for the entire program of about 1.25 on 19 processors
and 1.23 on 7 processors. Higher speedups might result
from parallelizing the entire application.

6.2 Optimizing ocean

There were 31 places in the main routine of ocean
where we extracted and fused interprocedurally adja-
cent loops. They were divided almost evenly between
adjacent calls and loops adjacent to calls. In all 15
cases where a loop was adjacent to a call, the loop
was 2-dimensional, while the loop in the called pro-
cedure was 1-dimensional. Prior to fusion, we coalesced
the 2-dimensional loop into a 1-dimensional loop by
linearizing the subscript expressions of its array refer-
ences. The resulting fused loops consisted of between
2 and 4 parallel loops from the original program, thus
increasing the granularity of parallelism.

To measure performance improvements due to inter-
procedural transformation, we performed steps similar
to those in Figure 4. Directives forced the paralleliza-
tion and blocking of the individual loops in the Original
version, and the fused loops in IPtrans. The execution
times were measured for the entire program and just
the optimized portion. The optimized execution times
are shown below.

<table>
<thead>
<tr>
<th>Processors = 7</th>
<th>Time in optimized portion</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>81.9s</td>
<td>5.7</td>
</tr>
<tr>
<td>IPinfo</td>
<td>80.9s</td>
<td>5.8</td>
</tr>
<tr>
<td>IPtrans</td>
<td>80.6s</td>
<td>5.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processors = 19</th>
<th>Time in optimized portion</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>45.8s</td>
<td>10.1</td>
</tr>
<tr>
<td>IPinfo</td>
<td>48.0s</td>
<td>9.7</td>
</tr>
<tr>
<td>IPtrans</td>
<td>36.4s</td>
<td>12.7</td>
</tr>
</tbody>
</table>

The speedups are relative to the time in the opti-
mized portion of the sequential version of the pro-
gram, which was 645.9 seconds. The optimized code
accounted for about 5 percent of total program execu-
tion time. For the whole program, the parallelized
versions achieve a speedup of about 1.06 over the se-
quential execution time.
Note that IPtrans achieved a 32 percent improvement over Original in the optimized portion. This improvement resulted from increasing the granularity of parallel loops and reducing the amount of synchronization. It is also possible that fusion reduced the cost of memory accesses. Often the fused loops were iterating over the same elements of an array. These 31 groups of loops were not the only opportunities for interprocedural fusion; there were many other cases where fusion was safe, but the number of iterations were not identical. Using a more sophisticated fusion algorithm might result in even better execution time improvements.

7 Related Work

While the idea of interprocedural optimization is not new, previous work on interprocedural optimization for parallelization has limited its consideration to inline substitution [4, 13, 23] and interprocedural analysis of array side effects [5, 9, 12, 20, 29, 30, 35]. The various approaches to array side-effect analysis must make a tradeoff between precision and efficiency. Section analysis used here loses precision because it only represents a few array substructures, and it merges sections for all references to a variable into a single section. However, these properties make it efficient enough to be widely used by code generation. In addition, experiments with regular section analysis on the LINPACK library demonstrated a 33 percent reduction in parallelism-inhibiting dependences, allowing 31 loops containing calls to be parallelized [20]. Comparing these numbers against published results of more precise techniques, there was no benefit to be gained by the increased precision of the other techniques [29, 30, 35].

Sections inspired a similar but more detailed array summary analysis, data access descriptors, which stores access orders and expresses some additional shapes [5, 21, 22]. In fact, the slice annotation to sections could be obviated by using some of the techniques in Huelsergen et. al. for determining exact array descriptors for use in dependence testing. However, slices are appealing due to our existing implementation and their simplicity.

8 Conclusions

This paper has described a compilation system; introduced two interprocedural transformations, loop embedding and loop extraction; and proposed a parallel code generation strategy. The usefulness of this approach has been illustrated on the Perfect Benchmark programs spec77 and ocean. Taken as a whole, the results indicate that providing freedom to the code generator becomes more important as the number of processors increase. Effectively utilizing more processors requires more parallelism in the code. This behavior was particularly observed in spec77, where the benefits of interprocedural transformations were increased with the number of processors.

Although it may be argued that scientific programs structured in a modular fashion are rare in practice, we believe that this is an artifact of the inability of previous compilers to perform interprocedural optimizations of the kind described here. Many scientific programmers would like to program in a more modular style, but cannot afford to pay the performance penalty. By providing compiler support to effectively optimize procedures containing calls, we encourage the use of modular programming, which, in turn, will make these transformations applicable on a wider range of programs.

Acknowledgments

We are grateful to Paul Havlak, Chau-Wen Tseng, Linda Torczon and Jerry Roth for their contributions to this work. Use of the Sequent Symmetry S81 was provided by the Center for Research on Parallel Computation under NSF Cooperative Agreement # CDA8619893.

References

