Context Optimization for SIMD Execution

Ken Kennedy
Gerald Roth

CRPC-TR94455-S
May, 1994

Center for Research on Parallel Computation
Rice University
P.O. Box 1892
Houston, TX 77251-1892

This is the conference version of report CRPC-TR93306-S.
Context Optimization for SIMD Execution*†

Ken Kennedy Gerald Roth
Department of Computer Science
Rice University, Houston, TX 77251

Abstract

One issue that SIMD compilers must address is generating code to change the machine context; i.e., disabling processors not involved in the current computation. We present two compiler optimizations that reduce the cost of context changes. The first optimization, context partitioning, reorders the Fortran 90 code so that as subgrid loops are generated, as many statements as possible that require the same context are placed in the same loop nest. The second optimization, context splitting, splits the iteration space of the subgrid loops into sets that have invariant contexts. This allows us to hoist the code that sets the machine context out of the subgrid loops.

1 Introduction

SIMD machines offer impressive cost/performance ratios, and they are very well suited for a large body of engineering and scientific applications. However, current compilers for SIMD machines do not come close enough to exploiting the full potential of these machines. Within the Fortran D project, we are developing a compiler to study advanced compilation techniques for SIMD machines. This paper describes one facet of the project.

With SIMD machines there is a need to explicitly turn processors on and off. This is due to the fact that there is only a single instruction stream and not all processors are to execute each instruction. Only processors containing data related to the current instruction should execute it. If a processor is not to execute a set of instructions, it must be explicitly "masked out". However, changing the machine state, or context, is an expensive operation. Setting the machine

context is an overhead that one must pay to execute on a SIMD architecture. The work presented here addresses this overhead by reducing the number of times that the machine context must be set.

The next section gives an overview of a SIMD architecture and a general SIMD compilation framework. It introduces the concepts that motivate this work. Section 3 describes our strategy for reducing the cost of setting the machine context. We present some preliminary results in Section 4. Section 5 discusses related work by others.

2 Machine and compiler overview

In this section we will give a brief overview of the target SIMD architecture and our Fortran 90D SIMD compilation strategy. For a description of the Fortran D language see the paper by Fox et al. [9].

2.1 A distributed-memory SIMD architecture

A SIMD computer contains many data processors operating synchronously, each executing the same instruction, using a common program counter. Each data processor is a fully functional ALU (Arithmetic Logical Unit). The SIMD architectures in which we are interested associate some local memory with each data processor. The data processor, along with its associated memory, is referred to as a processing element (PE). The collection of all PEs is called the PE array.

Each PE has an execution flag which can be set on or off to indicate whether the PE should execute the current instruction. When taken as a whole, the execution flags of all the PEs are said to determine the context of the PE array.

There is also a serial front end (FE) processor. The FE has three responsibilities. The first is to drive the PE array by broadcasting instructions and related data to all PEs. The second is to perform all scalar computations and control flow operations. Third, the FE is the system interface to the external world.

*This research was supported in part by the IBM Corporation through the Graduate Resident Study Program, by the Center for Research on Parallel Computation, a National Science Foundation Science and Technology Center, under the NSF cooperative agreement CCR-9120008, and by ONR grant N00014-93-1-0158.
\[\mu_{\text{block}}(i) = \left(\frac{i}{\text{Extent}_1}, (i - 1) \mod \text{Extent}_1 + 1\right) \]
\[\mu_{\text{block}}^{-1}(i_1, i_2) = (i_1 - 1) \times \text{Extent}_1 + i_2 \]
\[\mu_{\text{cyclic}}(i) = \left(\frac{i - 1}{\text{Extent}_1}, \left[\frac{i}{\text{Extent}_1}\right]\right) \]
\[\mu_{\text{cyclic}}^{-1}(i_1, i_2) = (i_1 - 1) \times \text{Extent}_1 + i_2 \]

Figure 1: Distribution functions and their inverses.

REAL X(256), Y(20, 20)
DECOMPOSITION A(256), B(20, 20)
ALIGN A(1) WITH A(1)
ALIGN Y(1, J) WITH B(1, J)
DISTRIBUTE A(\text{CYCLIC})
DISTRIBUTE B(\text{BLOCK, BLOCK})

Figure 2: Fortran D code declaring two distributed arrays.

2.2 SIMD compilation

This section describes our overall compilation strategy. It describes the steps necessary in translating a Fortran 90D program for execution on a SIMD architecture. For a comparison, Albert et al. give an overview of compiling for the Connection Machine in Paris mode [2], and Sabot describes compiling for the Connection Machine in Slicewise mode [16].

2.2.1 Array distribution

To exploit parallelism, the Fortran 90D SIMD compiler distributes the data arrays across the PE array so that each PE has some of the data to process. The manner in which arrays are distributed is very important for maximizing parallelism while minimizing expensive communication operations. When arrays are distributed across the PE array, each PE will locally allocate an equal-sized subgrid to hold its portion of the distributed array. The rank of the subgrid matches the rank of the distributed array. The extent of the i-th subgrid dimension is Extent_i = \left[\frac{N_i}{P_i}\right]$, where N_i and P_i are the extents of the distributed array dimension and the PE array dimension, respectively.

The compiler uses a distribution function [11] to calculate the mapping of an array element to a subgrid location within a PE. Given an array A, the distribution function $\mu_A(i)$ maps an array index i into a pair consisting of a PE index iproc and a subgrid index j. An inverse distribution function, $\mu_A^{-1}(iproc, j)$, gives the reverse mapping. Figure 1 shows examples of distribution functions and their inverses for one-dimensional arrays with either BLOCK or CYCLIC distributions. In this paper all arrays, whether a user array or the PE array, use one-based indexing.

The Fortran D code in Figure 2 illustrates the concepts of data distribution. Given a SIMD machine with $P = 16$ PEs, the compiler would distribute array X as shown in Figure 3. Each PE would allocate a local subgrid X'(16). On the same machine, array Y would be distributed by the compiler as shown in Figure 4. Notice how the PE array is now treated as a 4 x 4 matrix of PEs; i.e., $P_1 = P_2 = 4$. Thus $\text{Extent}_1 = \text{Extent}_2 = 5$ and each PE would allocate Y'(5, 5) as the local subgrid.

2.2.2 Computation partitioning

After the compiler maps distributed arrays onto the memory of the PE array, it must map parallel computations to the processors. Our philosophy is to use the "owner computes" rule, where every processor only performs computations that update data it owns [7, 22].

2.2.3 Communication generation

Once data and computation distributions are finalized, the compiler must insert any necessary communication operations to move data so that all operands of an expression reside on the PE which will perform the com-
putation. These communication operations can often be optimized by exploiting efficient collective communication routines; e.g., CSHIFT. The exact details of how the required communication operations are determined and generated are beyond the scope of this paper. Interested readers are referred to the work by Li and Chen [15].

After the communication operations have been inserted, all computational expressions reference data that are strictly local to the associated PEs. For example, the statement:

\[X(2:255) = X(1:254) + X(2:255) + X(3:256) \]

would be changed into the following three statements, where TMP1 and TMP2 are arrays that match the size and distribution of X:

\[\begin{align*}
 \text{TMP1} &= \text{CSHIFT}(X, -1) \\
 \text{TMP2} &= \text{CSHIFT}(X, 1) \\
 X(2:255) &= \text{TMP1}(2:255) + X(2:255) + \text{TMP2}(2:255)
\end{align*} \]

Notice that in the third statement all the operands are perfectly aligned with one another and that there is no further communication required to compute the expression or store the result.

2.2.4 Subgrid looping

Finally, the compiler translates the parallelism that is explicit in the Fortran 90 array syntax into code that manipulates the arrays that have been distributed across the PEs. Since each PE is in fact a serial processor, the array expressions must be scalarized, i.e., translated into serial code [4, 21]. The serial code operates on the data local to a PE. If an array is distributed such that the subgrid allocated to each PE has several elements, then the serial code is placed in a loop (or loop nest as required) that iterates over the subgrid. This is known as the subgrid loop. For a detailed description of the issues involved in generating correct subgrid loops for SIMD architectures, see the paper by Weiss [20].

As an example, if the array assignment statement:

\[X(1:256) = X(1:256) + 1.0 \]

is performed on array X in Figure 3, the following subgrid loop will be generated:

\[\begin{align*}
 \text{DO I = 1, Extent1} & \\
 & \text{! Extent1 = 16} \\
 X'(I) &= X'(I) + 1.0 \\
 \text{ENDDO}
\end{align*} \]

Subgrid looping is very closely related to sectioning used for allocating vector registers [5]. In this case, the PE array can be thought of as a multidimensional vector register. Just as in vector register allocation, loop fusion [3] can be a powerful optimization. It is useful for reducing loop overhead and improving data locality. Unfortunately, loop fusion is not always safe. A data dependence between two adjacent loops is called fusion-preventing if after fusion the direction of the dependence is reversed [1, 19]. The existence of such a dependence means that fusion is not safe. In our case however, no such fusion-preventing dependences can exist between adjacent subgrid loops. This is due to the fact that the generation of communication, as described in the preceding section, causes all subgrid loops to operate on "perfectly aligned" data.

Due to this perfect alignment of data within array operations, our SIMD compiler can directly generate a single subgrid loop nest for adjacent Fortran 90 array statements if they have the same distribution and cover the same iteration space. We call such array statements congruent. Such subgrid loop generation precludes the need for loop fusion.

2.2.5 Context switching

Given the Fortran D declarations in Figure 2, let us assume that we now encounter the array assignment statement \(X(2:242) = X(2:242) + 1.0 \), which increments 241 elements of X starting with the second element. As illustrated in Figure 3, PE 1 holds 15 of these elements in \(X'(2:16) \), PE 2's full subgrid is involved, and PEs 3 through 16 each have affected elements in \(X'(1:15) \). The subgrid loop for this statement must enable and disable different sets of PEs depending upon which subgrid element is being processed. The inverse distribution functions described in Section 2.2.1 determine which sets of PEs to enable. The subgrid loop generated for this statement is:

\[\begin{align*}
 \text{DO I = 1, Extent1} & \\
 & \text{! Extent1 = 16} \\
 \text{Set_Context}((I-1)*P+iproc \geq 2) \land ((I-1)*P+iproc \leq 242)) \\
 X'(I) &= X'(I) + 1.0 \\
 \text{ENDDO}
\end{align*} \]

\(P \) is the number of processors, while iproc is a unique number assigned to each PE and corresponds to its position in the PE array. The function Set_Context will cause each PE to evaluate the logical expression and enable its execution flag if the result is true, otherwise the execution flag is disabled.

In a similar manner, operations on arrays which do not "evenly" fill the machine require context switching code to be inserted into the subgrid loop. Compare the Fortran D declarations in Figure 5 to those in Figure 2. On the same 16 processor machine, array Y2 would be distributed as seen in Figure 6.

Since different PEs contain data in different subgrid locations, the subgrid loop must contain code to change the context depending upon which subgrid el-
REAL Y2(17,19)
DECOMPOSITION B2(17,19)
ALIGN Y2(I,J) WITH B2(I,J)
DISTRIBUTE B2(BLOCK,BLOCK)

Figure 5: Fortran D code declaring an odd-shaped array.

\[
\begin{array}{cccc}
\text{Y2} & \ldots & \ldots & \ldots \\
\text{PE 1.1} & \text{PE 1.2} & \text{PE 1.3} & \text{PE 1.4} \\
\ldots & \ldots & \ldots & \ldots \\
\text{Y2} & \ldots & \ldots & \ldots \\
\text{PE 4.1} & \text{PE 4.2} & \text{PE 4.3} & \text{PE 4.4}
\end{array}
\]

Figure 6: A 17 × 19 two-dimensional array mapped in a BLOCK fashion onto a 16 PE machine configured as a 4 × 4 matrix.

3 Context optimization

As can be seen in the two simple examples given in Section 2.2.5, the code required to set the context of the PE array can include multiple logical and arithmetic operations. This code can be a significant portion of the work performed within a subgrid loop. It is our goal to reduce the impact of this overhead for programs compiled for SIMD machines.

Our Fortran 90D SIMD compiler strategy has a two-pronged approach to minimize the expense of context switching. First, we rearrange the program statements so that as subgrid loops are generated, as many statements as possible that execute under the same context are placed within the same subgrid loop. We call this optimization context partitioning. Second, we alter the order in which subgrid elements are processed by performing loop transformations on the subgrid loops. These transformations will allow us to hoist the calls to Set_Context out of the loops and thus reduce the number of context changes. We call this optimization context splitting. These optimizations are described in detail in the following subsections.

3.1 Context partitioning

As explained in Sections 2.2.4 and 2.2.5, a single subgrid loop nest is generated for adjacent Fortran 90 array statements that are congruent, and these statements all execute within the same context. However, unless an effort is made to make congruent array statements adjacent, many small subgrid loops may still be generated. Sabot has recognized this problem, and recommends that users of the CM Fortran compiler rearrange program statements, when possible, to avoid the inefficiencies of such subgrid loops [17]. In order to alleviate this problem automatically, our compiler has an optimization phase, called context partitioning, that reorders the statements within a basic block. The reordering attempts to create separate partitions of scalar statements, communication statements, and congruent array statements.

To accomplish context partitioning, we use an algorithm proposed by Kennedy and McKinley [12]. Whereas they were concerned with partitioning parallel and serial loops, we are partitioning Fortran 90 statements. The algorithm works on the data dependence graph (DDG) [14] which must be acyclic. Since we are working with a basic block of statements, our dependence graph will contain only loop-independent dependences [4] and thus meets that criteria. Besides the DDG, the algorithm takes two other arguments: the set of congruence classes contained in the DDG,
and a priority ordering of the congruence classes. We create congruence classes for scalar statements, communication statements and each set of congruent array statements.

The priority ordering is required to handle class conflicts. A class conflict occurs when there exist dependences such that a pair of statements from one class may be merged during partitioning or a pair from another class, but not both since that would introduce a cycle in the DDG and thus make it unschedulable. The following contrived code segment, whose DDG is shown in Figure 7, gives an example of a class conflict:

\[
\begin{align*}
 s1: & \quad A(1:100) = A(1:100) + 1.0 \\
 s2: & \quad B(2:99) = B(2:99) * C(2:99) \\
 s3: & \quad C(1:100) = B(1:100) \\
 s4: & \quad D(2:99) = A(2:99)
\end{align*}
\]

It is possible to merge nodes \(s1 \) and \(s3 \) or nodes \(s2 \) and \(s4 \), but we cannot merge both pairs. The priority ordering is used to determine which pair should be merged. The algorithm will merge pairs with a higher priority before those with a lower priority. Kennedy and McKinley have shown that choosing an optimal ordering of classes is NP-hard in the number of classes. However, since class conflicts are considered rare, a good heuristic for choosing an order should be effective. The heuristic that we have chosen is to order the array statement congruence classes by their size, largest to smallest for the given basic block, and to give the scalar and communication classes the lowest priority.

Given the chosen priority ordering, the algorithm is incrementally optimal; i.e., for each class \(c \), given a partitioning of classes with higher priority, the partitioning of \(c \) results in a minimal number of partitions. The algorithm will partition the DDG in \(O((N+E)C) \) time, where \(N \) is the number of statements, \(E \) is the number of dependence edges and \(C \) is the number of congruence classes. For details on the algorithm, we refer interested readers to their paper.

During subgrid loop generation, all statements in a partition will be placed in the same subgrid loop. The number of subgrid loops which operate over statements with the same context is thus minimal, given the chosen priority ordering.

It should be noted that context partitioning is not a SIMD-only optimization. It is useful for Fortran 90 compilers that target MIMD and scalar architectures as well. Even though such architectures do not require setting a machine context, context partitioning can reduce the overhead of loops generated during scalarization and can increase the possibilities of data reuse.

3.2 Context splitting

In the first example in Section 2.2.5, which incremented \(X(2:242) \), the PE array has the same context for iterations 2 through 15 of the subgrid loop; during these iterations all the PEs are active. To take advantage of this invariance, context splitting will modify the subgrid loop by performing loop splitting, also called index set splitting [6, 21]. By splitting the iteration space into disjoint sets, each requiring a single context, we can safely hoist the context setting code out of the resulting loops.

Unlike context partitioning, context splitting is a SIMD-only optimization. Compilers for MIMD machines can often side-step the issue that is addressed by context splitting. Since each PE in a MIMD machine also has control logic, a compiler can generate a program such that each PE determines the loop bounds for its own subgrid loop. By reducing the loop bounds, the compiler can often avoid iterations for which the PE has no work and thus does not need to introduce any guard statements into the subgrid loop body in those cases [10, 18].

We will now discuss the details of context splitting. To simplify the discussion, we will first discuss one-dimensional CYCLIC and BLOCK distributions, and then show how to combine one-dimensional splitting to handle multidimensional cases. Due to space constraints we will not address BLOCK_CYCLIC distributions; interested readers are referred to our technical report [13].

Our canonical example in the following presentation will be the statement \(X(N:N) = X(N:N) + 1.0 \). Context splitting of subgrid loops for full arrays that do not evenly fill the machine is treated simply as a special case, where \(N = 1 \).

3.2.1 Context splitting a CYCLIC distribution

With a standard CYCLIC distribution, element \(X(N) \) may reside on any processor relative to the processor holding element \(X(N) \). However, the offset of \(X(N) \) within the subgrid \(X' \) must be less than or equal to the offset of \(X(N) \). I.e., given \(\mu_X(N) = (iproc_N, jN) \), \(\mu_X(M) = (iproc_M, jM) \), and \(N \leq M \), then \(jN \leq jM \).
must hold. We cannot make any statement regarding the relationship of \(\text{iproc}_N \) and \(\text{iproc}_M \), except that \(j_N = j_M \) implies \(\text{iproc}_N \leq \text{iproc}_M \).

Using this information and our knowledge of CYCLIC distributions, we know that all PEs should be enabled for the subgrid iterations \(j_N + 1 \) to \(j_N + 1 \). This naturally divides the iteration space into three sets: \(\{j_N\} \), \(\{j_N + 1: j_M - 1\} \), and \(\{j_M\} \). Figure 8 depicts this situation. When \(j_N = j_M \), the second iteration set is empty and the first and third set are merged into a single set. The subgrid loop after context splitting now looks like this:

\[
\text{IF} \ (j_N = j_M) \ \text{THEN} \\
\quad \text{Set_Context} \ (\text{iproc}_N \geq \text{iproc}_N \ \text{AND} \ \text{iproc}_N \leq \text{iproc}_M) \\
\quad X'(j_N) = X'(j_N) + 1.0 \\
\text{ELSE} \\
\quad \text{Set_Context} \ (\text{iproc} \geq \text{iproc}_N) \\
\quad X'(j_N) = X'(j_N) + 1.0 \\
\quad \text{Set_Context} \ (. \text{TRUE.).} \\
\quad \text{DO} \ I = j_N + 1, j_M - 1 \\
\quad \quad X'(I) = X'(I) + 1.0 \\
\quad \text{ENDDO} \\
\quad \text{Set_Context} \ (\text{iproc} \leq \text{iproc}_M) \\
\quad X'(j_M) = X'(j_M) + 1.0 \\
\text{ENDIF}
\]

The code can be simplified if \(N \) and/or \(M \) are known constants. When \(N \) and \(M \) are both constants, the IF-test can be evaluated at compile-time and only the code for the appropriate branch needs to be generated. In the case where the operation is over the full array but the array does not evenly fill the machine, we know that \(N = 1 \). In this situation the IF-test is unnecessary and the pre-loop statements can be merged into the DO-loop. This is equivalent to peeling off the last iteration of the subgrid loop and hoisting the context setting code accordingly. The result is:

\[
\text{Set_Context} (. \text{TRUE.).} \\
\quad \text{DO} \ I = 1, j_M - 1 \\
\quad \quad X'(I) = X'(I) + 1.0 \\
\quad \text{ENDDO} \\
\quad \text{Set_Context} \ (\text{iproc} \leq \text{iproc}_M) \\
\quad X'(j_M) = X'(j_M) + 1.0 \\
\]

3.2.2 Context splitting a BLOCK distribution

Given a BLOCK distribution, element \(X(N) \) will always reside on a processor that has a number less than or equal to the processor holding element \(X(M) \); i.e., \(\text{iproc}_N \leq \text{iproc}_M \). Figure 9 shows the affected elements of array \(X \) for the assignment \(X(N:M) = X(N:M) + 1.0 \) when \(X \) has a BLOCK distribution. As can be seen, all processors between \(\text{iproc}_N \) and \(\text{iproc}_M \) are enabled for all subgrid elements, whereas all processors outside that range are disabled for all subgrid elements. Processor \(\text{iproc}_N \) is enabled at iteration \(j_N \) and subsequent iterations. Processor \(\text{iproc}_M \) is enabled only for iterations up to \(j_M \).

The difficulty in context splitting a BLOCK distribution comes from distinguishing the case where \(j_N \leq j_M \) from the case where \(j_N > j_M \). If we let \(L_0 = \min(j_N, j_M + 1) \) and \(H_1 = \max(j_N - 1, j_M) \), then the iteration space is naturally split into the following three sets: \(\{1: L_0 - 1\}, \{L_0: H_1\}, \) and \(\{H_1: \text{Extent}\} \). The context for the first iteration set will be the processor set \(\{\text{iproc}_N + 1 : \text{iproc}_M\} \). The processor set for the second iteration set will include both \(\text{iproc}_N \) and \(\text{iproc}_M \) if \(j_N \leq j_M \) holds, otherwise it will exclude both. The context for the third iteration set will be processors \(\{\text{iproc}_N : \text{iproc}_M - 1\} \). The subgrid loop after context splitting is now:

\[
\text{IF} \ (j_N \leq j_M) \ \text{THEN} \\
\quad \text{L}_0 = j_N \\
\quad \text{H}_1 = j_M \\
\quad \text{MASK} = \text{iproc} \geq \text{iproc}_N \ \text{AND} \ \text{iproc} \leq \text{iproc}_M \\
\text{ELSE} \\
\quad \text{L}_0 = j_M + 1 \\
\quad \text{H}_1 = j_N - 1 \\
\quad \text{MASK} = \text{iproc} \leq \text{iproc}_N \ \text{AND} \ \text{iproc} \leq \text{iproc}_M \\
\text{ENDIF} \\
\text{DO} \ I = 1, \text{L}_0 - 1 \\
\quad X'(I) = X'(I) + 1.0 \\
\text{ENDDO} \\
\text{Set_Context} \ (\text{MASK}) \\
\quad \text{DO} \ I = \text{L}_0, \text{H}_1 \\
\quad \quad X'(I) = X'(I) + 1.0 \\
\text{ENDDO} \\
\text{Set_Context} \ (\text{iproc} \geq \text{iproc}_N \ \text{AND} \ \text{iproc} < \text{iproc}_M) \\
\quad \text{DO} \ I = \text{H}_1 + 1, \text{Extent} \\
\quad \quad X'(I) = X'(I) + 1.0 \\
\text{ENDDO}
\]

This code can be greatly simplified if both \(N \) and \(M \) are compile-time constants, in which case the IF expression can be eliminated. In addition, if \(L_0 = 1 \) or \(H_1 = \text{Extent} \) then the body of the first or last DO-loop, respectively, will not be executed. That DO-loop and
its associated call to Set_Context can then be safely eliminated.

3.2.3 Context splitting a multidimensional distribution

To perform context splitting on a multidimensional distribution, we use loop splitting on each dimension separately. This produces a set of imperfectly nested DO-loops. We then use loop distribution [14] to produce a set of perfectly nested DO-loops, each of which operates under a single context. The context for each loop nest is the intersection of the contexts produced for each dimension.

Let's consider again the array Y2 as declared and distributed in Figures 5 and 6. Performing context splitting on the statement Y2 = ABS(Y2), we first perform loop splitting on each dimension. For the first dimension, the iteration space is divided into the sets {1:2} and {3:5}, while the second dimension produces the sets {1:4} and {5}. After splitting the loops we use loop distribution, which produces these sets of two-dimensional iteration spaces: {1:2,1:4}, {3:5,1:4}, {1:2,5}, and {3:5,5}. The result is the following code which sets the context only four times compared to the 25 times of the naive subgrid loop presented in Section 2.2.5:

```
Set_Context (.TRUE.)
DO J = 1, 4
   DO I = 1, 2
      Y2*(I,J) = ABS ( Y2*(I,J) )
   ENDDO
ENDDO
Set_Context (iproc1 < 4)
DO J = 1, 4
   DO I = 3, 5
      Y2*(I,J) = ABS ( Y2*(I,J) )
   ENDDO
ENDDO
Set_Context (iproc2 < 4)
DO I = 1, 2
   DO J = 1, 5
      Y2*(I,J) = ABS ( Y2*(I,J) )
   ENDDO
ENDDO
Set_Context (iproc1 < 4 .AND. iproc2 < 4)
DO I = 3, 5
   DO J = 1, 5
      Y2*(I,J) = ABS ( Y2*(I,J) )
   ENDDO
ENDDO
```

3.2.4 Discussion

A close evaluation of the context splitting optimization reveals two possible concerns: loop overhead and code growth. Both of these occur because context splitting takes a single subgrid loop nest and generates multiple loop nests (with reduced loop bounds) each with a copy of the loop body (minus context setting code). We will address each of these concerns separately.

The additional loop overhead generated by context splitting is really not a concern at all. Recall that all the control flow operations related to the looping constructs are executed on the FE processor. Since the FE processor is usually much faster than the PE processors, and is executing asynchronously from them, it is able handle the extra loop overhead while still keeping the PE array busy. In essence, we have increased the workload executed on the FE, but this has allowed us to decrease the workload sent to the PE array.

Since context splitting produces several copies of the loop body for each loop level which is split, code growth is exponential in the number of nested subgrid loops which are split. If this growth is a concern, we have two alternatives that can be used to address it. First, the loop body could be encapsulated as an internal subroutine, which is branched to and returned from. Since the subroutine is internal, the interface simply requires that the return address be saved. Alternatively, by limiting context splitting to only the innermost one or two subgrid loop levels, one can keep code growth bounded by a linear amount. Our experiments have shown that this small limitation still retains most of the performance gains achieved when splitting all subgrid loop levels.

4 Results

To verify the effectiveness of these optimizations, we performed them by hand on two sections of code. The first section of code was taken from a Fortran 90 version of the ARPS weather prediction code [8]. It initializes 16 two-dimensional arrays. We chose this section of code since context partitioning would not benefit additionally from data reuse nor would it be penalized for generating excessive register pressure. Thus all performance improvements are directly attributable to the elimination of redundant context changes and the reduction of loop overhead.

We generated five versions of this code segment and timed each on a dedicated DECmipp 12000. The first version was simply the Fortran 90 segment as taken from the ARPS program. The second version was a translation of the Fortran code into MPL, the MasPar Parallel Application Language. We optimized this version by performing the following optimizations by hand: common subexpression elimination, strength reduction, and loop-invariant code motion. We then took this MPL version and generated three new versions by applying our context optimizations; one version for each of the optimizations, and one version which combined both optimizations. All five versions used a (CYCLIC,CYCLIC) distribution, the standard distribution of the MasPar Fortran compiler.
The version combining context partitioning and splitting reduced the execution time by 45% when compared to the original MPL code (which itself reduced the execution time by approximately 10% compared to the Fortran code). See Figure 10 for a comparison of execution time versus subgrid size for these three versions of the code. Individually, context partitioning and context splitting reduced the execution time by 35% and 45%, respectively. The reason that the combination of the two optimizations did not outperform context splitting is that, once splitting eliminated the costly context setting code from the subgrid loops, the loops became memory bound. For subgrid loops that are more computationally intensive, we expect these two optimizations to have an additive effect, although the total effect may be less than the improvement experienced with this code.

To consider something more computationally interesting, we looked at a five-point difference computation:

\[
\text{RESULT} = (A + \text{CSHIFT}(A,1,1) + \text{CSHIFT}(A,-1,1) + \text{CSHIFT}(A,1,2) + \text{CSHIFT}(A,-1,2))/5
\]

RESULT and A were both two-dimensional arrays distributed in a (CYCLIC,CYCLIC) manner. We generated three versions of the code: a Fortran 90 version, a hand-optimized MPL version, and an MPL version which had context splitting applied (since there was only a single statement, context partitioning was not applicable). We then timed the subgrid loops. In all cases, the communication time to set up the computation was excluded from the measurements. The results are shown in Figure 11.

Since the time to compute and set the context is a smaller portion of the total work performed in this subgrid loop, the performance gain is not as impressive as that obtained on the array initialization code. But the 13% reduction in the execution time from the hand-optimized MPL version is still significant.

As a final point of interest, we took the above five-point difference computation and performed context splitting only on the innermost subgrid loop as discussed in Section 3.2.4. Code growth was minimal, adding only two statements to the MPL code: a call to Set_Context and a replication of the loop body (a single assignment statement). In comparison, the original split version, in which context splitting was applied to both loops in the subgrid loop nest, slightly more than doubled the amount of code. Additionally, the performance difference between the two split versions was minimal. The new split version reduced the execution time of the hand-optimized MPL version by 12%, compared to the 13% reduction of the original split version.

5 Related work

Work at Compass by Albert et al. describes the generation and optimization of context setting code [2]. They avoid redundant context computations when adjacent statements operate under the same context. They also perform classical optimizations on the context expressions, such as common subexpression elimination. They mention the possibility of reordering computations to minimize context changes, but they do not discuss such transformations.

While giving some optimization hints for the slice-wise CM Fortran compiler, Sabot describes the need for code motion to increase the size of elemental code blocks (blocks of code for which a single subgrid loop can be generated) [17]. He goes on to state that the compiler does not perform this code motion on user code, and thus it is up to the programmer to make
them as large as possible. In a later paper describing the internals of the compiler, he describes how it attempts to perform code motion so that subgrid loops may become adjacent and thus fused [16]. However, the code motion performed is limited to only moving compiler-generated scalar code from between subgrid loops, not in moving the loops themselves. It was this work that motivated us to investigate the context partitioning problem.

6 Summary

We have developed a double-edged sword to combat the cost of context switching in codes for SIMD machines. The first edge of the sword reduces the number of subgrid loops which operate over the same context. The second edge reduces the number of context changes per subgrid loop from \(O(N) \) to \(O(1) \) for unmasked array assignment statements.

7 Acknowledgments

We would like to thank Chau-Wen Tseng for pointing out the similarities between context partitioning and loop fusion. We would also like to thank the members of the Fortran D group at Rice University who read early drafts of this paper. Finally, we thank NPAC, a CRPC facility, for providing the DECmpp used in the experiments.

References

