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Abstract

CC++ is a parallel object-oriented programming language that uses
parallel composition, atomic functions, and single-assignment variables to
express concurrency. We show that this programming paradigm is equiv-
alent to several traditional imperative communication and synchronization
models, namely: semaphores, monitors, and asynchronous channels. A col-
lection of libraries which integrates these traditional models with CC++ is
specified, implemented, and formally verified.
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Chapter 1

Introduction

1.1 Goal

My goal is to demonstrate that the single-assignment paradigm is consistent
with traditional imperative synchronization and communication schemes,
and furthermore that an object-oriented language which incorporates single-
assignment variables, atomic functions, and parallel composition can sup-
port and seamlessly integrate these methodologies with object orientation.
This support and integration is demonstrated by providing a collection of
generic libraries whose correctness is formally verified.

1.2 Motivation

Parallelism has recently and rapidly become a “truly attractive and viable
approach to the attainment of very high computational speeds” [1]. This
revolution has been driven by the observation that parallelism is often a
natural part of a computation, and that by exploiting this parallelism dra-
matic speedups can be achieved. With the proliferation of massively parallel
architectures for supercomputing, of multiprocessor workstations for multi-
tasking, and of networks of PC’s for communication and multiuser applica-
tions, parallel programming now stands poised to enter the mainstream of
computation.

The problem then becomes: how do we write software for these new
architectures? It seems that programming these new parallel architectures
is much more difficult than sequential programming in the von Neumann



model. Most importantly, verification of parallel imperative programs is
believed to be a much harder problem than verification of their sequential
counterparts. Many sets of synchronization and communication primitives
and programming methodologies have been developed to express parallelism,
originally in the context of operating systems, and now in the context of
parallel user programs.

Which of these constructs is the “best”? Most of these constructs can be
shown to be equivalent in their expressive power, and this equivalence result
is commonly seen to support the view that it is sufficient to provide any one
paradigm. This work is motivated by the observation that the integration
of more than one paradigm in a programming language is desirable, despite
this equivalence result. That is, a programmer might wish to use a particular
set of primitives based on concerns other than expressiveness.

The integration of a collection of imperative synchronization and com-
munication paradigms in a single programming language is important for
four reasons:

¢ One particular methodology is often most appropriate (perhaps ef-
ficient or natural) for a given problem instance. For example: sema-
phores might be used to program an n-process barrier; a monitor might
be used to control access to a bounded buffer; single-assignment vari-
ables might be used for a functional implementation of a merge sort;
asynchronous channels with explicit message passing might be used to
implement a distributed dining philosophers arbitration layer.

¢ A single problem instance might lend itself to a decomposition in which
different components are expressed in different paradigms. For exam-
ple, an arbitration layer written with explicit message passing might
be used to link a physically distributed collection of shared memory
MIMD tasks, each of which uses semaphores for internal synchroniza-
tion and single-assignment variables for functional composition.

¢ Programmers often become comfortable with a particular methodol-
ogy. Their experience with that methodology is an important asset,
and they should have the flexibility to make use of it.

e There is a wealth of existing programs implemented in a variety of
paradigms. It should be possible to reap the benefits of the portability
of a language without paying the penalty of excessive modification to
existing code.



A parallel programming language should therefore support and integrate a
variety of styles and methodologies.

Implementing the synchronization and communication constructs re-
quired in a particular instance is often difficult. The correctness of such an
implementation is usually not readily apparent from the code, and lengthy
and complicated formal arguments are required to convince ourselves that
the code does what it should. Clearly such constructs should be implemented
and verified once, then the code and proof reused whenever appropriate.

CC++ enables a programmer to make use of a variety of traditional
synchronization and communication primitives, in that it is possible to im-
plement these primitives, but this implementation and its verification re-
quires a considerable amount of skill and effort. This work is motivated
by the belief that these primitives should be supported in CC++. That is,
it should be easy and convenient for a programmer to make use of these
methodologies and their formal verifications.

1.3 Library Support

Class libraries are used to achieve the desired integration of parallel pro-
gramming paradigms. C++ provides several powerful mechanisms for Li-
brary support, including generic classes, inheritance, and separate module
compilation and archival. Support for these paradigms is provided at the
library level because:

e It does not require making extensions to the language itself. Such
extensions require new compilers.

e Abstraction techniques facilitate the integration of well-designed class
libraries. :

The worth of a library can be measured in several ways. The aims of
our design have been:

Robustness: is formally verified or, at the very least, thoroughly tested.
Flexibility: is usable in a variety of roles and circumstances.

Generality: is applicable to a large class of problem instances.
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Extensibility: is useful as a bottom layer upon which higher level abstrac-
tions can be developed.

Naturalness: works the way one would expect.
Expressiveness: has all the necessary functionality.

Efficiency: contains optimizations which make it inexpensive to use.

1.4 Single-Assignment Variables

Single-assignment variables are a mechanism for synchronization and com-
munication among concurrent processes. Single-assignment variables can be
seen as delayed-assignment constants. The variable is initially undefined,
and it can be written to (or defined) at most once. A subsequent attempt
to write to the variable is a run-time error. If a process attempts to read
a single-assignment variable which has not yet been defined, that process
suspends until the variable becomes defined [6, Section 2.1)].

Single-assignment variables are no more powerful than semaphores.
This can be seen by the following C++ implementation of a single-assignment
variable generic object, assuming the availability of a semaphore object.

template <class T>
class Single <T> {
private:
Semaphore Readers(0); //Semaphore with initial value 0
Semaphore Mutex(1); //Semaphore with initial value 1
Boolean Defined; //has variable been defined?
T value; //value of single-assignment variable
public:
Single(void) { //Constructor
Defined = FALSE;
}

T read(void) {
Readers.P();
Readers.V();
return value;

}

void write(T v) {
Mutex.P();
if (Defined == TRUE) {
Mutex.V();

Y



write_twice_error_condition;

else {
Defined = TRUE;
value = v;
Mutex.V();
Readers.V();

}

}
};

Thus, single-assignment variables can be seen as simply a discipline on using
semaphores.

1.5 CC++

CC++ is a parallel object-oriented programming language based on C++.
It makes use of single-assignment variables, atomic functions, and parallel
composition to express and control concurrency. The following two CC++
constructs are used in the implementation of the semaphore, monitor, and
asynchronous channel libraries presented in chapters 2-4:

sync: a single-assignment object.

atomic: a function whose statements are not interleaved with statements
that are not part of the function.

In addition, the transport layer optimization presented in chapter 5,
and the example programs used through out the report, also make use of
the following CC++ constructs:

par: a block of statements which are executed in parallel.
parfor: a loop whose iterations are executed in parallel.

spawn: the creation of a new thread of control which executes in parallel
with the spawning thread.

global: a pointer which spans address spaces.

For a complete description of these constructs, refer to [12] and [15].

A queue library is also used. This is a C++ queue with the following
public interface:




template <class T>
class Queue<T> {

public:
void enqueue(T#*); //adds one item to queue
T * dequeue(void); //removes first item from queue
int isempty(void); //returns 1 if queue empty (0 otherwise)

};

1.6 Organization

In addition to the introduction and conclusion, this report is divided into
4 chapters, each of which describes a library to support a different set of
synchronization and communication primitives. Each chapter is divided
into the following sections:

Introduction: an intuitive description of the primitive being supported.
Specification: a formal specification of the primitive.

Design: a description of the considerations and decisions that were made
when designing the implementation.

Implementation State and Properties: the invariants that character-
ize the implementation. The conjunction of these invariants imply the
specification.

Implementation: the code of the library.

Examples: several examples of how the library can be used to solve some
classic synchronization problems.

Correctness: the implementation annotated with assertions to prove that
the invariants given in “Implementation State and Properties” are
maintained.

Proof of Specification: proof that the invariants given in the “Implemen-
tation State and Properties” section imply the specification.

The following points concerning the assertional annotation of these li-
braries should be noted:



e An invariant need not hold in the middle of an atomic action. The
invariants must only be shown to hold at the beginning and end of
such an action.

e Appending to a queue increments the queue size by 1, while dequeuing
decrements the queue size by 1.

e Auxiliary variables are used to simplify the assertions. Changes to
these auxiliary variables are shown in emphasis font.



Chapter 2

Semaphores

2.1 Introduction

A semaphore is a mechanism which provides a means for synchronization
between concurrent processes. A semaphore has an integer value which is
invariantly non-negative. Three operations are defined for a semaphore:
initialization, P(), and V().

o Initjalization sets the value of the semaphore to a non-negative integer.
e The V() operation atomically increments this value. It never suspends.

e The P() operation attempts to decrement the semaphore’s value. If
the value of the semaphore is greater than 0, then the decrement is
performed and the P() operation terminates. If, on the other hand, the
value of the semaphore is 0 (and therefore a decrement would violate
the invariant that the value be non-negative), then the P() operation
suspends until the decrement may be safely performed.

Semaphores were introduced in [7] and are further discussed in [9], [14], and
(2, Chapter 4].

2.2 Specification
Since the P() operation is not atomic, we distinguish between the initiation

and the termination of this operation. Let iP be the number of P() opera-
tions that have been initiated, and let cP be the number of P() operations
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that have completed. Since the V() operation is atomic, no such distinction
is required and we define cV to be the number of completed V() operations.

The initial value of the semaphore is defined to be so where s > 0. The
safety condition is that as many P() operations as possible will complete,
subject to the constraints of the number of initiated P() operations and the
sum of the initial value of the semaphore and the number of completed V()
operations.

cP = min(iP, sg + cV) (2.1)

In addition, our implementation of semaphores meets the fairness re-
quirement that the i** P() operation initiated can be allowed to terminate
only if the (i — 1)t P() operation has also been allowed to terminate. De-
noting the (i 4+ 1)** P() operation by P; (for ¢ > 0) we have:

Vi :i> 1:terminated(P;) = terminated(P;_;) (2.2)

2.3 Design

2.3.1 Semaphore as a Class

A semaphore can be implemented as a CC++ class. It stores its current
value in a private data member value. Access is via two public member
functions, P() and V(). Since the V() member function never suspends,
and since it manipulates the shared mutable value, this function is atomic.
The member function P(), on the other hand, can suspend, and so is not
atomic. The class also contains a queue to keep track of the suspended P()
operations.

2.3.2 Suspension and Awakening

To control the suspension and awakening of P() operations, pointers to sync
objects are used. Since these objects are used only for this purpose, a unary
type suffices. This sync object then either can be undefined, or it can be
defined to the unary value permitted by the type. For our purposes we use
the unary type which permits only the value SET.

A P() operation begins by creating a pointer, called stop, to a new
sync object of our unary type. If the value of the semaphore is 0, then

9




> |

zZero

value SuspendedP

Figure 2.1: Queue of Pointers to sync Objects for Suspending
P() Operations

this pointer is added to the SuspendedP queue. The P() operation then
suspends on the contents of stop (see Figure 2.1).

A V() operation begins by checking whether there are any suspended
P() operations. If there are, then the first element of SuspendedP is de-
queued and the sync value defined (to SET). If there are not, then the value
of the semaphore is incremented.

2.4 Implementation State and Properties

2.4.1 State

The state of a semaphore is given by:

1. The value of the semaphore, s. Since each completed P() operation
decrements this value and each completed V() operation increments
this value, we have:

s=89—cP+cV (2.3)

2. The queue of suspended P() operations. The number of suspended
P() operations, qP, is the number of P() operations which have been
initiated, but have not yet completed.

iP=qP + cP (2.4)

10



Also, the queue maintains a FIFO ordering of these elements.
Vj:0 < j < qP : SuspendedP[j] = Pp,; (2.5)

Here the queue is SuspendedP and SuspendedP [n] denotes the (n+
1)tk element of the queue.

A P() operation that has been initiated can be in one of two possi-
ble states: suspended or terminated. A P() operation is defined to be
suspended precisely when it is an element of the SuspendedP queue. It is
terminated if and only if it has been initiated and is not suspended.

Vi:0< i< iP: terminated(P;) ¢ initiated(P;) A ~suspended(P;) (2.6)

2.4.2 Properties

Boundedness Requirement. The number of P() operations that can
complete is bounded by the initial value of the semaphore and the number
of V() operations that have completed.

cP<sg+cV (2.7)

The Set of Suspended Processes is Minimal. A process can be sus-
pended only if its completion would violate the safety condition given by
(2.1). :

(qP = 0)V (s = 0) (2.8)

2.5 Implementation
typedef enum {SET=1} Unary;

class Semaphore {

private:
int value; //value of the semaphore
Queue<sync Unary> SuspendedP; //queue for susp. P ops

atomic void check_value (sync Unary * ptr);

11




public:
Semaphore (int);
atomic void V(void);
void P(void) ;

};

Constructor

Semaphore: :Semaphore (int v=1) {
if (v > 0) value = v;
else error_condition;

}

Check_Value

atomic void Semaphore::check.value (sync Unary * ptr) {
if (value > 0) {
value--;
*ptr = SET;
}
else {
SuspendedP.enqueue(ptr) ;

}
}

v

atomic void Semaphore::V(void) {
if (SuspendedP.isempty()) value++;
else *(SuspendedP.dequeue()) = SET;

}

P

void Semaphore::P(void) {
sync Unary * stop = new sync Unary;
check_value(stop);
if (xstop == SET) delete stop;

12



2.6 Examples

2.6.1 Barrier Synchronization

Motivation Our first example is a simple demonstration of how sema-
phores are declared, initialized, and used.

Problem Description Two concurrent processes wish to repeatedly syn-
chronize at a certain point in their computations. Neither process should be
allowed past this point before the other process has reached the same point.
This is known as a barrier.

#define N 20 //number of iterations

Semaphore barrier1(0);
Semaphore barrier2(0);

void P1(void) {
for (int i=0; i<N; i++) {
work();
barrier1.V(Q);
barrier2.P();
}
}

void P2(void) {
for (int i=0; i<N; i++) {
work();
barrier2.V();
barrier1.P(Q);

}
}

main()

par {
P10
P2Q);

Discussion The semaphores barrieri and barrier2 are initialized with
the value 0. The semaphore operations P() and V() use the regular C++
member function notation, for example barrier1.V().

13




2.6.2 Dining Philosophers

Motivation Arrays of semaphores can be declared and initialized. Sema-
phores should be passed to functions as reference parameters.

Problem Description Five philosophers are sitting around a table. There
is a fork between each one. Philosophers cycle between thinking and eating.
In order to eat, a philosopher needs both the fork to his left and the fork to
his right. A fork cannot be simultaneously held by two people.

#define N 20 //number of iterations
void Philosopher (Semaphore &left, Semaphore &right) {

for (int i=0; i<N; i++) {
left.P(); right.PQ);

eat();
left.V(); right.V(Q);
think() ;
}
}
main()
{
Semaphore fork[S] = {1,1,1,1,1};
par {
parfor (int i=0; i<3; i++) Philosopher(fork[il,fork[i+1]);
Philosopher (fork[0],fork(4]);
}
}

Discussion Arrays of semaphores can be declared and each semaphore
initialized with its own value. In this case, fork is an array of 5 semaphores,
each of which is initialized with the value 1. One must be careful when
passing semaphores to functions. Because of the pass-by-value semantics
of regular argument evaluation, semaphores must be passed by reference.
Otherwise, the function will see only a local copy of the semaphore and its
P() and V() operations will have no visible effect outside the function. Note
that left and right are declared in the header of Philosopher() to be
references to semaphores.

14



2.6.3 Readers Writers

Motivation Semaphores can be members. The default constructor ini-
tializes a semaphore’s value to 1.

Problem Description A collection of concurrent processes share a data-
base. Some processes, the readers, wish to read data, while other processes,
the writers, wish to modify the data. Many readers can access the database
concurrently, but each writer needs exclusive access.

class Database {
private:
int nr; //number of readers
Semaphore mutexR; //mutual ezclusion between readers
Semaphore rv; //mutual ezclusion for accessing database

public:
Database (void) //mutezR and rw implicitly initialized to 1
{nr=0;}

void reader (void) {
mutexR.P();
nr += 1;
if (nr == 1) rv.PQ;
mutexR.V(Q);
read(); //read the database
mutexR.P();
nr -= 1;
if (nr == 0) rwv.V(Q);
mutexR.V();

}

void writer (void) {
rv.PQ;
write(); //write the database
re.VQ;

}
}s

Discussion The default constructor for semaphores initializes the value
to 1. If this is the desired initial value (as is the case in the Database class),
no explicit construction of the member is required. This practice, however,
is not encouraged since it makes the initial value implicit.

15




2.6.4 Bounded Buffer

Motivation Member semaphores can be initialized with explicit construc-
tion.

Problem Description A bounded buffer is a multislot communication
buffer. Processes known as producers add messages to the buffer, while pro-
cesses known as consumers remove them. A producer may insert a message
if there is at least one empty slot. A consumer may remove a message if there
is at least one full slot. Insertions must be mutually exclusive to preserve
the integrity of the buffer,.as must deletions be.

class BoundedBuffer {
private:
int size;
char *Buf;
int front, rear;
Semaphore empty, full; //assert: size-2 <= empty+full <= size
Semaphore mutexD, mutexF;

public:
BoundedBuffer(int n) : empty(n), full(0),
mutexD(1), mutexF(1) {
size = n;
Buf = new char[size];
front = 0;
rear = 0;

}

void deposit (char data) {
empty.PQ);
mutexD.P();
buf[rear] = m; rear = (rear+1)%size;
mutexD.V();
full.v(Q);

}

void fetch (char &data) {
full.P();
mutexF.P();
data = buf[front]; front = (front+1)%size;
mutexF.V();
empty.V(Q);

16



Discussion Here the semaphore members empty and full must be ini-
tialized to values which are not 1. Hence, the semaphores must be explicitly
constructed. This is accomplished by following the constructor for the en-
closing class BoundedBuffer with a colon, then the semaphores and their
initial values. The semaphores mutexD and mutexF could have been omitted
from this list since their initial values are the same as that provided by the
default constructor (i.e. 1). This is the usual mechanism provided by C++
for initializing member classes.

2.7 Correctness

We show the invariance of equations 2.3 through 2.8 by annotating the text
of the implementation. Note that these equations need not hold in the
middle of atomic actions, but only at the beginning and at the end of such
actions.

Annotated Program for Constructor

Semaphore: :Semaphore (int v = 1)

{

if (v >= 0) value = v;
// s =3y =v;
// ¢cP=cV =qP =1iP =0

else error_condition;

// BEGIN ASSERTIONS

/] s =8 =V

// cP =cV=qP =iP =0
// (2.3) - (2.8)

// END ASSERTIONS

Annotated Program for Check_Value

atomic void Semaphore::check.value(sync Unary * ptr)

{

// BEGIN ASSERTIONS

17



/1 (2.3) - (2.8)
// END ASSERTIONS

/! iP++;

// BEGIN ASSERTIONS

// iP = qP + cP + 1

// initiated(Pjp_;) A ~suspended(Pijp_;) A ~terminated(Pjp_1)
// (2.3), (2.5), (2.7), (2.8)

// END ASSERTIONS

if (value > 0) {

//
//
//
//

BEGIN ASSERTIONS
s>0
QP = 0
iP=qgP + cP + 1

// initiated(Pjp—;) A ~suspended(Pjp—1) A ~terminated(Pip_1)
// (2.3), (2.58), (2.7), (2.8)

// END ASSERTIONS

value--;

!/l s——;

// BEGIN ASSERTIONS

// s =89 -cP +cV -1

// s >0

// qP = 0

// iP = qP + cP + 1

// initiated(Pjp_;) A ~suspended(Pip_1) A ~terminated(Pip-1)
// (2.5), (2.7), (2.8)

// END ASSERTIONS

xptr = SET;

/! cP++;

// BEGIN ASSERTIONS

// qP = 0

// terminated(Pijp-1)
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// (2.3) - (2.8)
// END ASSERTIONS

}

else {

// BEGIN ASSERTIONS

// s=0

// iP = qP + cP + 1

// initiated(Pjp_1) A ~suspended(Pjp_;) A “terminated(Pip-1)
/! (2.3), (2.5), (2.7), (2.8)

// END ASSERTIONS

SuspendedP . enqueue(ptr) ;
/] qP++;

// BEGIN ASSERTIONS
// s =0
// initiated(Pjp_;) A suspended(Pip_1)
// (2.3) - (2.8)
// END ASSERTIONS
}
}

// BEGIN ASSERTIONS
// (2.3) - (2.8)
// END ASSERTIONS

Annotated Program for V

atomic void Semaphore::V(void)

{

// BEGIN ASSERTIONS
// (2.3) - (2.8)
// END ASSERTIONS

if (SuspendedP.isempty())
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// BEGIN ASSERTIONS
// qP = 0

// (2.3) - (2.8)

// END ASSERTIONS

value++;
/] s++;

// BEGIN ASSERTIONS

// qP = 0

// s =8y - cP + cV +1
// (2.4) - (2.8)

// END ASSERTIONS

else

// BEGIN ASSERTIONS
// qP > 0

// s =0

// SuspendedP[0] = P.p
// (2.3) - (2.8)

// END ASSERTIONS

*(SuspendedP .dequeue()) = SET;
/! qP——;
/! cP++;

// BEGIN ASSERTIONS

// s =0

// s =89 -cP+cV+1
// terminated(Pcp-;)

// (2.4) - (2.6), (2.8)
// END ASSERTIONS

}
/! cV++;

// BEGIN ASSERTIONS
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// (2.3) - (2.8)
// END ASSERTIONS

Annotated Program for P

void Semaphore: :P(void)

{
// BEGIN ASSERTIONS

// (2.3) - (2.8)
// END ASSERTIONS

sync Unary * stop = new sync Unary;
check_value(stop);

// BEGIN ASSERTIONS
// (2.3) - (2.8)
// END ASSERTIONS
if (*stop == SET)
// BEGIN ASSERTIONS
// (2.3) - (2.8)
// END ASSERTIONS
delete stop;

}

// BEGIN ASSERTIONS
// (2.3) - (2.8)
// END ASSERTIONS

2.8 Proof of Specification

Proof of (2.1)

TRUE

21



{ by 2.8,2.3, and 2.4 }

(cP=1iP)V (cP =89+ cV)
{ by 2.7 and definition of cP }

(cP > min(iP,sg + cV)) A (cP < iP) A (cP < 5o + cV)
{ property of min }

cP = min(iP,so+cV) [

Proof of (2.2) : For any i greater than or equal to 1 we have

&

terminatéd(P,-) A(iE>1)
{ by 2.6 }
initiated(P;) A -~suspended(P;) A (i > 1)
{ by definition of initiated() and suspended() }
(¢ < iP) A (P; & SuspendedP) A (¢ > 1)
{by25}
(1<i<iP)A(Bj:0<j<gP:cP+j=1)
{by24}
1<1<cP
{}
0<i1—-1<cP
{by 24}
(0<i-1<iP)A(A7j:0<j<qP:cP+j5=i-1)
{ by 2.5}
(0 <t—1< iP) A (P;—; ¢& SuspendedP)
{ by definition of initiated() and suspended() }
initiated(P;_,) A ~suspended(P;_,)
{ by 2.6 }
terminated(P;_,) 0O
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Chapter 3

Monitors

3.1 Introduction

A monitor is a class. It is a collection of data (member data) and of func-
tions (member functions) which manipulate this data. A monitor is shared
between concurrent processes and provides synchronization between these
processes in two ways:

1. Implicitly: only one process at a time is permitted to be inside a
monitor executing any of the member functions.

2. Explicitly: processes can synchronize by means of special variables
called condition variables. ’

A monitor guarantees that only its own member functions have access to its
member data, and therefore it can be used to implement a critical section
which requires exclusive access to a shared resource. In addition, a monitor
provides a special type of variable, called a condition variable, and two func-
tions signal() and wait(), which can be executed on this type of variable.
These functions are the only valid operations on a condition variable. They
can be used only inside monitor member functions. The operation wait()
on a condition variable ¢ causes the executing process to be suspended and
placed in a pool of blocked processes associated with c¢. The signal() op-
eration on condition variable ¢ causes one of the processes (if there are any)
in the pool of suspended processes associated with ¢ to become ready to
execute.
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It is important to note that when a process issues a signal() on a
condition variable, there are potentially two processes which are now eligible
to execute inside the monitor: the process which executed the signal() and
the process that was selected for reactivation (if there was one). We choose
here to allow the signaling process to continue executing inside the monitor.
This signaling discipline is known as “signal and continue”.

Monitors were introduced in [9] and [8]. They are described in detail in
[2] and [4], including extensions such as other possible signaling disciplines,
extended primitives, and priority waiting.

3.2 Specification

A monitor guarantees mutual exclusion implicitly by allowing only one of
its member functions to be executing at a time. Let #enter be the number
of times processes have entered the monitor (and begun executing) and let
#leave be the number of times they have left the monitor (either because
the function being executed terminated or performed a wait()). The safety
condition is then:

(#enter = #leave) V (#enter = #leave + 1) (3.1)

If every member function of a monitor either terminates or executes a
wait, then every function that becomes ready to execute is eventually al-
lowed to enter. Unfortunately, programmers can write functions that do
not terminate. Hence, only a much weaker progress property can be stated.
Let #became_ready be the number of processes which became ready to ex-
ecute (either by calling a monitor function, or by being reawakened after a
wait()). Then we have:

#enter = min(#became _ready, #leave + 1) (3.2)

We distinguish between the two cases for a signal(): either there is
at least one process waiting on the signaled condition variable, or there
is none. In the former case, the signal() is designated as heard since it
causes a process to become ready (the signaling process does not relinquish
the monitor), and in the latter case it is designated as ignored since it has
no effect. Initially there are no waiting processes. So there are three valid
operations on a condition variable: a wait, an ignored signal, and a heard
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signal. If the number of waits exceeds the number of signals which have
been heard, then the next signal will be heard. Thus, if £ = {w,s;,ss}
is the alphabet representing the operations wait, ignored signal, and heard
signal respectively, and V¢ € £* is the string of operations which have been
performed on condition variable ¢, then:

Is:se€ L(G): V¢<s (3.3)

where w < z for two strings w and z denotes that w is a prefix of z and
where G is the context-free grammar defined by the start symbol S, the set
¥ of terminals, and the production rules:

S — 85| BS|e
B — BwBs; | €

3.3 Design

3.3.1 Mutual Exclusion

We must guarantee that there is at most one process executing inside the
monitor at any one time. This mutual exclusion is provided by two member
functions, enter() and leave(). The enter() function is used at the be-
ginning of every user-defined member function and asks permission to enter
the monitor. The leave() function is used at the end of every user-defined
member function and notifies the monitor that another process can now be
allowed to enter.

The monitor maintains a private Boolean variable, busy, which is TRUE
exactly when there is a process executing inside. The monitor also main-
tains a private queue, Ready, of processes which are ready to execute, but
prevented from entering by the mutual exclusion requirement. This queue
is simply a collection of pointers to undefined sync objects on which the
processes that are ready are suspended. Allowing a process to enter then
amounts to dequeuing this pointer and defining the sync object.

The rule, then, for using the monitor library is simple: every member
function must begin with a call to enter() and must terminate with a call
to leave(). The behavior of a monitor that contains member functions
which do not obey this rule is not defined.
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3.3.2 Signaling and Waiting

The signal() and wait() operations are performed on condition variables.
They are the only valid operations on these variables. Condition variables
are visible only within a monitor, so they are implemented as a nested class.
With each condition variable a queue is associated. When a process executes
a wait(), it must exit the monitor and suspend. Exiting the monitor is
accomplished by dequeuing the next ready process, if one exists, or by setting
the busy flag to FALSE if one does not. The suspension on a condition
variable is accomplished by creating a new (undefined) sync object and
appending a pointer to it on the condition variable’s associated queue. The
process then attempts to read the contents of this sync object.

When a process executes a signal() on condition variable ¢, it must
make a process that is waiting on ¢ (if one exists) ready to execute. This
is accomplished by checking the queue associated with c. If this queue is-
empty, nothing needs to be done. If the queue is not empty, the first element
(which is a pointer to an undefined sync object) is dequeued and added to
the Ready queue. The signaling process remains inside the monitor.

sV
< -a.._
'1 <« - Ry -
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R4 .. ~———

enter() -~ S :

s '

L7 signal(C1) ‘ signal(C2) '

L’ Ready : '
Outside : Condition C1 :
Monitor ' s '
]

N B et A :

[N ! ’ s
. ]
. ' l(nait 1) Condition C2
N S "'
“J| Inside i
\| ns .’ wait(C2)
Monitor P

Figure 3.1: State Transitions for Processes using a Monitor
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3.3.3 Monitor as a Base Class

A monitor can be seen quite naturally as a CC++ class. The concepts of
data and function encapsulation of a monitor are consistent with those of
CC++ classes. There are certain constructs, specific to monitors, which all
monitors share. A monitor contains a definition of a condition variable type,
as well as two member functions (wait() and signal()) to operate on this
type. Also, a monitor ensures mutual exclusion between processes with two
more member functions enter() and leave().

In addition to these constructs which all monitors have, a monitor must
contain the particular member functions specific to the situation to which
it is being applied. For example, a bounded buffer monitor might have two
member functions insert() and remove() to control access to the buffer.
To be useful in the context of a general library, a programmer must be
able to “fill in” the member functions required by a particular problem
instance. Thus, a particular instantiation of a monitor will be a superset of
the fundamental data type and function members which all monitors share.

This functionality can be achieved by implementing the Monitor class
as a base class. To make use of this library, the programmer will create his or
her particular monitor class by deriving from the base Monitor class. The
programmer may then specify the additional member functions and data
that are required.

3.3.4 Data Encapsulation

A monitor must guarantee that only its own member functions have access
to its member data. C++ has a simple mechanism to ensure this protection:
the member data can be declared private. Again, the rule is simple: all
member data of a monitor must be declared private.

Of course, the library implementation of the base Monitor class cannot
guarantee that all derivations from this base class will have only private
member data. The behavior of a monitor with non-private member data is
not defined.

3.3.5 Using the Monitor Library

An application which uses the Monitor library to implement a particular
monitor, must obey the following rules:
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1. The user-defined monitor must be derived from the library monitor.
2. All member data must be private.

3. Every member function must begin with a call to enter(), and must
terminate with a call to 1eave(). Note that this implies that the outer
block of a monitor member function must be a sequential block. It also
implies that no member function may contain a return statement, and
hence all member functions must be void functions.

3.4 Implementation State and Properties

3.4.1 State

The state of a monitor is defined by:

1. Whether or not a process is inside the monitor. If such a process is
executing inside, the Boolean flag busy has value TRUE, otherwise it
has value FALSE.

busy < #enter = #leave + 1 - (3.4)
-busy & #enter = #leave (3.5)

2. The queue (Ready) of processes which are ready to execute inside
the monitor. The size of this queue is the difference in the number
of processes which became ready and the number which entered the
monitor.

#enter < #became_ready (3.6)

3. The queues of waiting processes associated with each condition vari-
able. Let Q§ be the number of processes waiting on condition variable
c after k operations on that variable. Initially, the wait queues are
empty, so Q5 = 0. Since each wait(c) operation appends a process to
this queue and each signal(c) operation that is heard removes one,
we have:

Vk V2 k20: 0<Q (3.7)
Ve Ve 2k21: Q% =|Voar T {W} = V5.1 [ {sn}] (3.8)
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Since signal()’s on empty queues are always ignored and signal()’s
on non-empty queues are always heard, we have:

VE Ve[ >k2>20: Qi=0=> Vi #s, (3.9)
VE |V >k2>20: Qi >0=V]i#s; (3.10)

3.4.2 Properties

Maximality of Progress As many processes as possible will be allowed
to enter the monitor, subject to the constraints of mutual exclusion and of
the number which became ready.

busy V (#enter = #became_ready) (3.11)

3.5 Implementation

typedef enum {SET=1} Unary;
typedef enum {FALSE=0,TRUE=1} Boolean;

class Monitor {
private:
Boolean busy;
Queue<sync Unary> Ready;

atomic void check busy(sync Unary x);

protected:
Monitor(void) ;
void enter(void);
atomic void leave(void);
class Condition
{ public: Queue<sync Unary> Waiting; };
void wait(Conditiong);
void signal(Conditiong);

}s
Constructor
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Monitor: :Monitor(void) {
busy = FALSE;
}

Check_Busy

atomic void Monitor::checkbusy(sync Unary * ptr) {
if (busy == FALSE) {

busy = TRUE;
*xptr = SET;
}
else { ~
Ready.enqueue(ptr);
}
}
Enter

void Monitor::enter(void) {
sync Unary *hold = new sync Unary;
check_busy(hold);
if (+hold == SET) delete hold;

}

Leave

atomic void Monitor::leave(void) {
if (Ready.isempty()) busy = FALSE;
else *(Ready.dequeue()) = SET;

}

Wait

void Monitor::wait(Condition &c) {
sync Unary *stop = new sync Unary;
c.Waiting.enqueue(stop);

leave();
if (*stop == SET) delete stop;

}
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Signal

void Monitor::signal(Condition &c) {
if (c.Waiting.isempty() == 0)
Ready.enqueue(c.Waiting.dequeue());

3.6 Examples

3.6.1 Critical Section

Motivation Our first example is a simple demonstration of how a monitor
can be created by deriving from the base Monitor class.

Problem Description We have a collection of concurrent processes that
require mutually exclusive access to a critical section.

class CriticalSection : private Monitor {
public:
void access (void) {
enter();
criticalsection();
leave();

}
};

Discussion The C++4 mechanism of inheritance is used to create a moni-
tor. Note how the monitor function access() begins with a call to enter()
and terminates with a call to leave().

3.6.2 Dining Philosophers

Motivation Arrays of condition variables can be declared inside monitors.

Problem Description As described in chapter 2, five philosophers are
sitting around a table. There is a fork between each one. Philosophers cycle
between thinking and eating. In order to eat, a philosopher needs both the
fork to his left and the fork to his right. A fork cannot be simultaneously
held by two people.
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class DiningRoom : private Monitor {
private:
int forks[5];
Condition forks.available[5];

public:
DiningRoom (void)
{ parfor (int i=0; i<4; i++) forks[il = 2; }

void start_eating(int i) {
enter();
while (forks[i] # 2) wait(forks.availablel[il);
forks[(i+4)%5] -= 1;
forks [(i+1)%5] -= 1;
leave();

}

void stop.eating(int i) {
enter();
forks[(i+4)%5] += 1;
forks[(i+1)%5] += 1;
if (forks[(i+4)%5] == 2) signal(forks.available[(i+4)%5]);
if (forks[(i+1)%S] == 2) signal(forks._available[(i+1)%S]);
leave();

Discussion Note how the data members of a monitor (the arrays forks
and forks_available) are private members. The constructor is used to
initialze these members. Arrays of condition variables are declared and
used in the usual CC++ manner.

3.6.3 Readers Writers

Motivation The outer block of member functions must be sequential.

Problem Description As described in chapter 2, a collection of concur-
rent processes share a database. Some processes, the readers, wish to read
data, while other processes, the writers, wish to modify the data. Many
readers can access the database concurrently, but each writer needs exclu-
sive access.

class RW_Controller : private Monitor {
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private:
int nr, nw;

Condition oktoread; //signaled when nw
Condition oktowrite; //signaled when nr = 0 A nw
public:

RW_Controller(void) {
nr = 0; nw = 0;

}
void request._read(void) {
enter();
while (nw > 0) wait(oktoread);
signal (oktoread) ;
nr = nr+1;
leave();
}
void release.read(void) {
enter();
nr = nr-1;
if (nr == 0) signal(oktowrite);
leave();
}
void requestwrite(void) {
enter();
while ((nr > 0) || (nw > 0)) wait (oktowrite);
n¥ = nv+l;
leave();
}
void releasewrite(void) {
enter();
par {
nv = nv-1;
signal (oktowrite);
signal (oktoread) ;
}
leave();
}

}s

Discussion The body of the release_read() member function can be a
parallel block. However, enter() and leave() must be the first and last

statements, so the outermost block must be sequential.
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3.6.4 Bounded Buffer

Motivation Monitor member functions must be void functions.

Problem Description As described in chapter 2, a bounded buffer is a
multislot communication buffer. Processes known as producers add messages
to the buffer, while processes known as consumers remove them. A producer
may insert a message if there is at least one empty slot. A consumer may
remove a message if there is at least one full slot. Insertions must be mutually
exclusive to preserve the integrity of the buffer, as must deletions be.

class BoundedBuffer : private Monitor {
private:
int n;
char *Buf;
int nextin, nextout, full.cnt;
Condition notempty, notfull;

public:
BoundedBuffer(int size) {
n = size;
Buf = new char[n];
full.cnt = 0;
nextin = 0;
nextout = 0;

}

void deposit (char data) {
enter();
while (full.cnt == N) wait(notfull);
Buf [nextin] = data;
nextin = (nextin+1)%n;
fullcnt += 1;
signal(notenmpty);
leave();

}

void remove (char &data) {
enter();
while (full_cnt == 0) wait(notempty);
data = Buf[nextout];
nextout = (nextout+1)%n;
fullcnt -= 1;
signal(notfull);
leave();
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Discussion The remove() member function should return the char data
item extracted from the buffer. Because remove() must be a void function,
it uses a reference parameter to return this data. This is a common technique
to permit monitor member functions to return values to the calling process.

3.7 Correctness

We show the invariance of equations 3.4 through 3.11 by annotating the
text of the implementation. Note that these equations need not hold in the
middle of atomic actions, but only at the beginning and at the end of such
actions. We make the assumption that the monitor has been implemented
following the rules outlined in section 3.3.5. This means that signal() and
wait() operations are atomic with respect to each other.

Annotated Program for Constructor

Monitor: :Monitor (void)

{

busy = FALSE;

// BEGIN ASSERTIONS

// -busy
// (3.4) - (3.11)
// END ASSERTIONS

Annotated Program for Check_Busy

atomic void Monitor::check.busy(sync Unary * ptr)

{

// BEGIN ASSERTIONS
// (3.4) - (3.11)
// END ASSERTIONS

// #became_ready++
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// BEGIN ASSERTIONS

// #enter < #became_ready-1

// busy V (#enter = #became_ready-1)
// (3.4) - (3.10)

// END ASSERTIONS

if (busy == FALSE) {

// BEGIN ASSERTIONS

// -busy

// #enter = #became_ready-1
// #enter = #leave)

// (3.4) - (3.10)

// END ASSERTIONS

busy = TRUE;

// BEGIN ASSERTIONS

// busy

// #enter = #became_ready-1
// #enter = #leave

// (3.6) - (3.10)

// END ASSERTIONS

*ptr = SET;
/! #enter++

// BEGIN ASSERTIONS

// busy
// (3.4) - (3.11)
// END ASSERTIONS

}

else {

// BEGIN ASSERTIONS
// busy
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// (3.4) - (3.11)
// END ASSERTIONS

Ready.enqueue(ptr);

// BEGIN ASSERTIONS
// busy

// (3.4) - (3.11)
// END ASSERTIONS

}

// BEGIN ASSERTIONS
// busy

// (3.4) - (3.11)
// END ASSERTIONS

Annotated Program for Enter

void Monitor::enter(void)

{

// BEGIN ASSERTIONS
// (3.4) - (3.11)
// END ASSERTIONS

sync Unary *hold = new sync Unary;
// BEGIN ASSERTIONS

// (3.4) - (3.11)

// END ASSERTIONS

check_busy(hold) ;

// BEGIN ASSERTIONS

// (3.4) - (3.11)
// END ASSERTIONS
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if (*hold == SET) delete hold;

// BEGIN ASSERTIONS
// (3.4) - (3.11)
// END ASSERTIONS

Annotated Program for Leave

atomic void Monitor::leave(void)

{

// BEGIN ASSERTIONS
// busy
// #enter = #leave+l

// (3.4) - (3.11)
// END ASSERTIONS

/! #leave++

// BEGIN ASSERTIONS
// busy

// #leave = #enter
// (3.6) - (3.11)
// END ASSERTIONS
if (Ready.isempty())

// BEGIN ASSERTIONS

// busy
// #leave = #enter
// #enter = #became_ready

// (3.6) - (3.11)
// END ASSERTIONS

busy = FALSE;

// BEGIN ASSERTIONS
// -busy
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// #leave = #became_ready

// (3.4) - (3.11)
// END ASSERTIONS

else

// BEGIN ASSERTIONS

// busy

// #leave = #enter

// #enter < #became_ready

// (3.6) - (3.11)
// END ASSERTIONS

* (Ready.dequeue()) = SET;
// #enter++

// BEGIN ASSERTIONS
// busy
// #leave < #became_ready

// (3.4) - (3.11)
// END ASSERTIONS

Annotated Program for Wait

void Monitor::wait(Condition &c)

{

// BEGIN ASSERTIONS
/] V¢l =k

// busy

// (3.4) - (3.11)
// END ASSERTIONS

sync Unary * stop = new sync Unary;

// BEGIN ASSERTIONS
/1 |Ve| =k
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// busy
// (3.4) - (3.11)
// END ASSERTIONS

c.Waiting.enqueue(stop);
/1l Vi=w
/1l Qi =0Qk+1

// BEGIN ASSERTIONS
/] |[Ve|l=k+1

// busy '

// (3.4) - (3.11)
// END ASSERTIONS

leave();

// BEGIN ASSERTIONS
// |Vé|=k+1

// (3.4) - (3.11)
// END ASSERTIONS

if (*stop == SET)

// BEGIN ASSERTIONS
/] |[Ve|=k+1

// busy

// (3.4) - (3.11)
// END ASSERTIONS

delete stop;

// BEGIN ASSERTIONS
/] |[Vél=k+1

// busy

// (3.4) - (3.11)
// END ASSERTIONS
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Annotated Program for Signal

void Monitor::signal(Condition &c)

{

// BEGIN ASSERTIONS
/] |Vel=k

// busy

// (3.4) - (3.11)
// END ASSERTIONS

if (c.Waiting.isempty() == 0) {

// BEGIN ASSERTIONS
/] Vel =k

// busy

/7 Qi >0

// (3.4) - (3.11)
// END ASSERTIONS

Ready.enqueue(c.Waiting.dequeue());
// #became_ready++

/1l V=5

/] Qi1 = Qi -1

// BEGIN ASSERTIONS

/]l |Ve|=k+1

// busy

// #enter < #became_ready
// (3.4) - (3.11)

// END ASSERTIONS

}

else {

// BEGIN ASSERTIONS
/1 Vel =k

// busy

/1l Q5 =0
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// (3.4) - (3.11)
// END ASSERTIONS

/] Vi=si
/1 Qi = Q%

// BEGIN ASSERTIONS

/1l \Vel=k+1
// busy
/! Qi1 =0

// (3.4) - (3.11)
// END ASSERTIONS

}

// BEGIN ASSERTIONS
/] |Vél=k+1

// busy

// (3.4) - (3.11)
// END ASSERTIONS

3.8 Proof of Specification

Proof of (3.1)

TRUE
& { law of excluded middle }
—busy V busy
& {by 3.4 and 3.5}
(#enter = #leave) V (#enter = #leave + 1)

Proof of (3.2)
TRUE
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& { by 3.11 and 3.4 }
(#enter = #became_ready) V (#enter = #leave + 1)
& { propery of min, and by 3.1, 3.6 }
(#tenter > min(#became_ready, #leave + 1)) A
(#enter < #became_ready) A (#enter < #leave + 1)
& { property of min }
(#enter > min(#became_ready, #leave + 1)) A
(#enter < min(#became_ready, #leave + 1))

& {1}

#enter = min(#became ready, #leave+ 1) [J

Proof of (3.3) : To show that V¢ is a prefix of a string in the language
generated by the context-free grammar given in the specification, we must
show the validity of the following three implications:

L (VG k1 T{shH < IVGkoq T{AWID A (IVE] 2 K + 1) = V(€ {w,si}
2. (IVS k1 T{shH = VG sca T{WIDA (Ve 2 K+ 1) = Vi € {w,s:}
3. Vg k=1 [ {sn}l > |V§ k=1 [ {w}| = FALSE

We prove each of these in turn.

L. (IVG.km1 TH{srH < IVG g T{WID A (VI 2 k4 1)
& { by3.8}
(@5 2 0)A(Vl 2 k+1)
= {by3l0}

Vi #si
& { since Vi €5 = {wys,si} }
ch € {W,Sh}
2. (VS k=1 T{shH = VG 4 T{AWIDA(IVE[ 2k + 1)

& { by 3.8}
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Qi=0)A(VlZk+1)

= { by3.9}
Vi # sn

& { since V¢, € & = {w,sp,s} }
V¢ € {w,s;i}

3. VS joa T} > 1V 4on T{W)]
& { by 3.8}
Qr <0
& { by 3.7}
FALSE (]

3.9 Interpretation of Grammar

Lemma : Given the context-free grammar G defined by start symbol 5,
the set ¥ = {#,[,]} of terminals, and the production rules:

S — #S|BS|e
B — B[B]| e

Let P denote the set
{(#*b#)"| bis a sfring of properly balanced square brackets}

and let £(G) denote the context-free language corresponding to G.

Then we have:
L(G)=P

Proof : We show equality of the two sets by showing that w € £L(G) &
w € P.

a) We first show w € £L(G) = w € P by induction on |w]|.

Base case. For |w| = 0, clearly w = ¢ and so is in P trivially. For
|w| = 1, there is only one production rule which generates a single terminal
symbol (i.e. § — #Y5) and therefore w = #. Again, clearly w € P.
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Inductive hypothesis. Suppose that for all w € L£(G) such that |w| =
k-2, weP.

Inductive step. Let w be a string in £(G) such that |w| = k. If w con-
tains no square brackets, clearly w € P. If w does contain square brackets,
it must contain an equal number of each (since the only production rule
for square brackets, B — B[B], creates one of each). Furthermore, there
must be at least one [ symbol followed immediately by a ] symbol. Thus,
Jz,y:z,y € T*: w = z[]Jy. Now note that this pair of square brackets must
have been generated by an application of the production rule B — B[B]
followed by an application of B — ¢ applied to the second B. That is,
B — B[B] — BJ[]. Hence, by omitting these two productions in the deriva-
tion of w, the string zy is obtained. Thus, zy € £(G). But |zy| = k - 2,
and so zy € P. Hence, w € P.

b) We now show w € P = w € L(G), again by induction on |w|.

Base case. For |w| = 0, clearly w = € and so is in £(G) (since it can be
generated by S — ¢). For |w| = 1, we see that w = #. Again, w € L(G)
since it is generated by § — #S5 — #.

Inductive hypothesis. Suppose that for all w € P such that |w| = k — 2,
w € L(G).

Inductive step. Let w be a string in P such that |w| = k. If w = #*,
it can be generated by k applications of the rule S — #.J5 followed by one
application of § — e. If w does contain square brackets, it must contain at
least one [ symbol which is immediately followed by a ] symbol (since the
square brackets are properly balanced). Thus, 3z,y:z,y € £* : w = z{]y.
Now, since w € P, certainly.zy € P (by a property of nested square brackets)
and also |zy| = k — 2, so zy € L(G). It can be easily shown that any
derivation of zy in G can be extended to form a derivation of z[Jy. Hence,
w € L(G).

Thus, L(G)=P. 0

3.10 Confidence in Specification

How can we be confident that the specification outlined in section 3.2 is
consistent with the accepted definition of a monitor? The specification of
a monitor is often given operationally. An informal description of the be-
haviour of a monitor is usually followed by a collection of proof rules or an
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implementation using semaphores. For our purposes, the former is insuffi-
cient and the latter unsatisfying.

A collection of axiomatic proof rules is not sufficient because they often
neglect to enforce any kind of progress condition. The proof rules introduced
in Hoare’s classic paper [9] allow a valid implementation of wait to be “exit
the monitor and suspend forever”. Other collections of proof rules ([11]
and [2]) have similar flaws, allowing spurious suspensions. It is a general
observation that the specification of a monitor implies the proof rules, but
not the converse.

When a monitor is defined by its implementation using semaphores,
the entire specification, including progress properties, is certainly captured
with the specification of semaphores. This, however, ties the specification
to a particular implementation and it is unclear how to cleanly prove that a
given implementation of a monitor meets the required safety, progress, and
fairness conditions.

To support the claim that the properties given in section 3.2 are a com-
plete and consistent definition of a monitor, we show their equivalence to a
state transition diagram. The assumption being made is that the state tran-
sition diagram is conceptually closer to the popular definition of a monitor.

Operational Specification. As described in section 3.4.1, the state of
a monitor is given by the collection of processes executing inside (in), the
queue of ready processes (g), and the queues of waiting processes associated
with each condition variable (we simplify the exposition by considering only
one condition variable, and hence only one associated queue, cq). We use
the tuple (in, rg, cq) to denote the corresponding state. The symbol ¢ is
used to denote the empty set, and lower case Greek letters (p and 7) denote
individual processes. The symbols + and — are used as superscripts to
represent addition and removal from a queue. For example, q*” denotes the
enqueuing of the process p to q, and q~" denotes the dequeuing of a process
from q and assigns the symbol = to represent it. The following, therefore, is
an exhaustive list of the valid transitions for a monitor:

call:

({p},rg,cq) — ({p},rg™",cq) (3.12)
(#y0,cq) — ({p},®,cq) (3.13)
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depart:

({p},bscq) — (9,¢,¢q) (3.14)
({p},rg# #,cq) — ({7},rq"",cq) (3.15)

signal:
({r},r9,6) — ({p},r9,9) (3.16)
({p}rg,cq# ¢) — ({p}, g™, cq™™) (3.17)

wait:
({p}:9sc9) — (8,9, cqtP) (3.18)
({p}; g # b,cq) +— ({7}, rq"", cq*P) (3.19)

The initial state of a monitor is (&, @, ).

Axiomatic Specification. Note that a state transition can be character-
ized by the movement of processes between the four collections associated
with a monitor: processes that are outside (out), those that are executing
inside (in), those that are ready to execute (rg), and those that are waiting
on a condition variable (cq). We use the notation (i — j) to denote a tran-
sition in which a process is moved from collection ¢ to collection j. Thus,
the four functions on monitors as defined in section 3.2 can be described as
follows:

cal : (out— in)V (out — rg) (3.20)
depart : (in — out)V ((in — out);(rqg — in)) (3.21)
signal : noopV (cqg — rg) (3.22)
wait : (in— cq) V ((in — cq) ;(rg — in)) (3.23)

Now we introduce the notation [i*] to mean the number of transitions
that have increased the size of collection ¢, and [¢i~] to mean the number
that have decrease the size of collection i. Thus, the definitions of the ghost
variables introduced in section 3.2 can be written:

#enter = [int]+[rg7] (3.24)
#leave = [in7]+ [rg7] (3.25)
#became_ready = [in]+ [rg*] (3.26)
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Vi =si & noop is k" transition on ¢ (3.27)
Vi=s, & (cg— rg)is kth transition on ¢ (3.28)
Vi=w @ ((in— cg)is k** transition on ¢) v

((in — cq);(rg — in) is k** transition on ¢)  (3.29)

Claim : The specifications (3.1) - (3.3) are consistent with the operational
specification of a monitor given by (3.12) - (3.19)

Proof : Let #i denote the number of transitions labelled i which have
occurred. We begin- by noting the following inequalities:

#3.13 < #3.14+ #3.18+ 1 (3.30)
#3.14 + #3.18 < #3.13 (3.31)
#3.17 < #3.18+ #3.19 (3.32)
#3.15+ #3.19 < #3.12+ #3.17 (3.33)

Also, by the definition of these terms (in (3.24) -(3.29)) we have:

#enter = #3.13+ #3.15+ #3.19
#leave = #3.14+ #3.15+ #3.18+ #3.19
#became.ready = #3.12+ #3.13 + #3.17

V¢ =s; & 3.16is k'* transition on ¢
VE=s, ¢ 3.17is k** transition on ¢
VE=w ¢ 3.18 or 3.19 is k** transition on ¢

We now show that each of the specifications in 3.2 is implied by the
operational description given by 3.12-3.19.

For (3.1):

TRUE
& { by 3.30 and 3.31 and #3.13€ W }

(#3.13 = #3.14 + #3.18) v #3.13 = #3.14 + #3.18 + 1)
& { by definition of #enter and #leave }

(#enter = #leave) V #enter = #leave + 1)
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For (3.2):

TRUE
& { by 3.33 }

(#3.124 #3.17 > #3.19 + #3.15) V (#3.12 + #3.17 = #3.19 + #3.15)
& { since initial state is (¢, ¢, ) }

(state # (9, ,¢cq)) V (#3.12 + #3.17 = #3.19 + #3.15)
& { since initial state is (¢, ¢, ) }

(#3.13 # #3.14 + #3.18) V (#3.12 + #3.17 = #3.19 + #3.15)
& { by 3.30 and 3.31 }

(#3.13 = #3.14 + #3.18 + 1) V (#3.12 + #3.17 = #3.19 + #3.15)
& { by 3.30 and 3.33 }

((#3.13 = #3.14 + #3.18 + 1) V (#3.12 + #3.17 = #3.19 + #3.15))

A(#3.13 < #3.14 + #3.18 4 1) A (#3.15 + #3.19 < #3.12 + #3.17)
& { property of min }

#3.13+ #3.15+ #3.19=

min(#3.12+ #3.13 + #3.17, #3.14 + #3.15 + #3.18 + #3.19+ 1)
& { by definition of #enter and #leave and #became_ready }

#enter = min(#became_ready, #1leave + 1)

For (3.3): We must show the following:

1. #3.18 + #3.19 > #3.17 = 3.16 cannot be the next transition
2. #3.18 + #3.19 = #3.17 = 3.17 cannot be the next transition

3. #3.18 + #3.19 = #3.17 = FALSE

We show each of these in turn.

1. #3.18 + #3.19 > #3.17
& { definition of transitions 3.17-3.19 }
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cq# ¢
= { definition of transition 3.16 }

3.16 cannot be the next transition

2. #3.18 + #3.19 = #3.17
& { definition of transitions 3.17-3.19 and cg = ¢ in initial state }
cq=¢
=> { definition of transition 3.17 }

3.17 cannot be the next transition

3. #3.18 + #3.19 < #3.17
&  {by332)}
FALSE

Thus, we have established that the specification in section 3.2 is con-
sistent with the operational specification given by transitions (3.12)-(3.19)
and initial state (@,¢,¢). 0O

We now establish the converse of the above result. Namely, that the
operational specification given by transitions (3.12)-(3.19) and initial state
(@, ¢, @) is consistent with the specification in section 3.2. That is, the spec-
ification in section 3.2 implies the operation specification. We proceed by
first showing that both specifications subtend the same valid state space. We
then establish that each transition given in the operational specification is a
consequence of the valid transitions outlined in section 3.2 (and redescribed
in (3.20) - (3.23)) and the constraint imposed by the valid state space.

Lemma 1 : Let S denote the set
{(in,rg,cq) | (lin| = 1) V (lin] = 0 A |rg| = 0)}

Then the set of valid states of a monitor (as defined operationally by (3.12)-
(3.19))is S.

Proof of Lemma 1

The set S is represented pictorially in Figure 3.2, where #1Inside = |in|,
#Ready = |rq|, and #Waiting = |cq|.
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#Waiting

#Inside
Figure 3.2: Valid States for a Monitor

Clearly the initial state (¢, ®, @) is in S. Also, it is easy to verify that
S is closed under the transitions (3.12)-(3.19). Thus, the set of valid states
of a monitor is a subset of S.

Now we verify that every state in .S can be reached from (¢, ¢, ¢) using
the transitions (3.12)-(3.19). First, a state (¢, ¢, cq) where |cqg| = k can be
reached by transition 3.13 followed by transition 3.17, all repeated k times
(i.e. (3.13;3.17)% ). Also, a state ({p}, rq, cg) where |rg| = k, |cq| = I can be
reached by transition 3.13, followed by & + ! transition 3.12’s, followed by [
transition 3.19’s (i.e. 3.13;3.125+%3.19Y). Thus, S is a subset of the valid
states of a monitor.

Hence, S is the set of valid states of a monitor (as defined operationally
by (3.12)-(3.19)). O

Lemma 2 : Let S denote the set
{(in,rg,cq) | (lin| = 1)V (lin] =0 A |rgl = 0)}

Then the set of valid states of a monitor (as defined axiomatically in section

3.2))is S.
Proof of Lemma 2
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TRUE
& { by 3.2 and definitions 3.24-3.26 }
[in*] + [rg”] = min([in*] + [rg"], [in"] + [rg] + 1)
& { property of min }
([rg™] = [rg*]) v ([in*] = [in"] + 1)
& { by 3.1 and definitions 3.24, 3.25 }
(([rg*] = [rg"]) v ([in*] = [in7] + 1)) A
(([in*] + [rg™] = [in~] + [rg"]) V ([in*] + [rg™] = [in7] + [rg™] + 1))
o { property of < }
(([rg*] = [rg~]) v ([in*] = [in"] + 1)) A
(([in*] = [in"]) v ([in*] = [in] + 1))
& { DeMorgan’s Laws }
([in*] = [in"] + 1) V (([in*] = [in7]) A ([rg"] = [rg"]))

Since the initial state has |in| = |rg| = |cg| = 0, therefore the set of states
permitted by constraints (3.1) and (3.2) is precisely the set §. [J

Claim : The operational specification (3.12) - (3.19) is consistent with the
specification of a monitor given in section 3.2.

Proof : We begin by noting that both specifications yield the same set of
valid states (from Lemmas 1 and 2). Let S denote this set.

We can now show that each transition given in the operational spec-
ification corresponds to one of the operations defined in section 3.2 (and
redescribed by (3.20) - (3.23), and pictorially represented in Figure 3.3)
subject to the constraint imposed by S.

For example, transitions (3.12) and (3.13) stem from the definition of
call in (3.20). If there are no processes inside the monitor, the (out — rg)
transition is disallowed by S. Thus, a call in this case must be a (out — in)
transition, which is precisely tramsition (3.13). Conversely, if there is a
process inside the monitor, then the (out — in) transition is disallowed. In
this case a call must be a (out — rg) transition, which is precisely transition
(3.12).
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Figure 3.3: Valid State Transitions for a Monitor

A similar argument can be used to show how the depart transitions
((3.14) and (3.15)) are implied by (3.21), and how the wait transitions ((3.18)
and (3.19)) are implied by (3.23).

This argument does not, however, suffice for the signal transitions, since
(3.22) permits a noop as a valid transition, which will never violate any
constraint imposed by S. For these signal transitions ((3.16) and (3.17)),
specification (3.3) is required. Equation (3.3) tells us that if a signal is
performed and there are no waiting processes, the signal is ignored. This
is precisely transition (3.16). Equation (3.3) also tells us that if a signal is
performed and there are waiting processes, the signal is heard. From the
definition of a heard signal (i.e. (cq— rg)), we see that this is precisely
transition (3.17).

Thus, the operational specification given by (3.12) - (3.19) is consistent
with the specification given in section 3.2. [
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Chapter 4

Asynchronous Channels

4.1 Introduction

An asynchronous channel is a first-in-first-out message-passing buffer. Two
operations are defined on such a channel:

¢ The nonblockingSend() operation places a message in the buffer. It
never suspends. Processes that send messages are called producers.

o The blockingReceive() operation removes the next message from the
buffer. If there is no message to be removed, this operation suspends
until there is such a message. Processes that receive messages are
called consumers.

The channel can be used by arbitrary and varying numbers of producers
and consumers. Asynchronous channels are discussed in [2] and [5].

4.2 Speciﬁcation

Since the blockingReceive() operation can suspend, it is not atomic, and
we distinguish between the initiation and the termination of this operation.
Let iR be the number of blockingReceive() operations that have been
initiated, and let cR be the number of blockingReceive() operations that
have completed. Since the nonblockingSend() operation is atomic, no such
distinction is required, and we define cS to be the number of completed
nonblockingSend() operations.



The first safety condition is that as many blockingReceive() opera-
tions as possible have completed, subject to the constraints of the number
of initiated blockingReceive() operations and the number of completed
nonblockingSend() operations.

cR = min(iR, cS) (4.1)

In addition, another safety condition is that the channel delivers the
messages in FIFO order. Let s(x) be the message sent by the (k + 1)tk
nonblockingSend executed on the channel, for 0 < k < cS. Let r() be
the message received by the (k + 1)** blockingReceive() executed on the
channel, for 0 < k <-cR. The (k + 1)** message received is the (k + 1)
message sent.

Vk:0<k<cR: T(k) = S(k) (4.2)

4.3 The Design

4.3.1 Asynchronous Channel as a Class

An asynchronous channel is implemented as a CC++ class. It stores the sent
messages that have not yet been received in a private queue, Undelivered.
The class has two public member functions: nonblockingSend() and
blockingReceive(). Since the nonblockingSend() member function never
suspends, and since it manipulates the Undelivered queue, this function is
atomic. The member function blockingReceive(), however, can suspend,
and so is not atomic. The class also contains a queue, EmptySlots, to keep
track of the suspended blockingReceive() operations.

The channel implementation should be general enough to permit any
object, including user-defined structures, to be passed as a message. This
generality is achieved (without indirection and without sacrificing the ben-
efits of type-checking) by making use of templates.

4.3.2 Messages and Slots

Producers send messages on the channel and consumers give empty slots to
the channel, as shown in Figure 4.1. A slot can contain at most one message.
The only transition that is possible in the state of a slot is the transition
from empty to full. A consumer gives an empty slot to the channel, waits
for the slot to become full, and then processes the message in the slot.



empty slots
CHANNEL ~_Consumer

full slots

messages

Figure 4.1: Channel Overview

Slots are implemented as sync pointers. An empty slot is an undefined
sync pointer. A full slot is a sync pointer that has been defined. The
pointer points to the message contained in the slot.

A blockingReceive() operation begins by creating a slot for a mes-
sage. If there is an undelivered message, the slot is filled and the operation
terminates. If there is no such message, the slot is added to a queue of
such slots, the EmptySlots queue. The blockingReceive() operation then
suspends on the contents of this slot (see Figure 4.2).

EmptySl/ot/\~ @
4 — M
| @
AT

(-

VA%

Figure 4.2: Queue of Empty Slots

(head)

AN

A nonblockingSend() operation begins by making a copy of the mes-
sage being sent. If there are any suspended blockingReceive() operations,
the first element of EmptySlots is dequeued and the sync pointer of the slot
is defined to point to the message copy. If there are none, the message copy is
appended to a queue of undelivered messages, Undelivered (see Figure 4.3).

This copying of the message being sent has two effects. First, the pro-
ducer is free to discard the message once the nonblockingSend() operation
has terminated. Second, the consumer is responsible for deallocating the
memory for the message that is received.
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Figure 4.3: Queue of Undelivered Messages

4.4 Implementation State and Properties

4.4.1 State

The state of an asynchronous channel is given by:

1. A queue of empty slots called EmptySlots. The number of elements

in this queue, #EmptySlots, is the number of blockingReceive()
operations that have been initiated, but have not yet completed.

#EmptySlots = iR — cR (4.3)

Empty slots are placed in the queue EmptySlots in order.
¥j :0 < j < #EmptySlots : EmptySlots(j] = r(jicR) (4.4)

where EmptySlots(j] is the (j + 1)** element of EmptySlots.

. A queue of undelivered messages called Undelivered. Let the number
of elements in this queue be #Undelivered. Since each completed
nonblockingSend() either adds a message to this queue or allows a
blockingReceive() operation to complete, we have:

#Undelivered = cS — cR (4.5)
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Undelivered messages are placed in the queue Undelivered in order.
Vj:0 < j < #Undelivered : Undelivered[j] = s(j+cR) (4.6)

where Undelivered[j] is the (j + 1)** element of Undelivered.

4.4.2 Properties

Boundedness Requirement. The number of blockingReceive() oper-
ations that can complete is bounded by the number of nonblockingSend()
operations that have completed.

cR<cS (4.7)
The Set of Suspended Processes is Minimal. A process can be sus-

pended only if its completion would violate the safety condition given by
(4.1).

(#EmptySlots = 0) V (#Undelivered = 0) (4.8)

Ordering Requirement. The value returned by the (k + 1)tk
blockingReceive() points to the message contained in the (k + 1)t slot.
Let slot() be the message contained in the (k + 1)t slot.

Vk:0<k<cR: Tk) = slot(k) (4.9)
Also, the (k + 1)t message sent is put in the (k + 1)t slot.

Vk:0<k<cR: S(k) = élot(k) (4.10)

4.5 Implementation

template <class Message>
class AChannel {
private: v
Queue <Message * sync> EmptySlots;
Queue <Message> Undelivered;

atomic void give.slot (Message * sync *);
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public:
atomic void nonblockingSend (const Message &);
Message * blockingReceive(void);

}s

Give_Slot

template <class Message>
atomic void AChannel<Message>::giveslot (Message * sync * p)
{

if (Undelivered.isempty()) EmptySlots.enqueue(p);

else p = Undelivered.dequeue();

}

Nonblocking Send

template <class Message>
atomic void AChannel<Message>::nonblockingSend (const Message
&M) {

Message * q = new Message (M);

if (EmptySlots.isempty()) Undelivered.enqueue(q);

else EmptySlots.dequeue() = q;

}

Blocking Receive

template <class Message>
Message * AChannel<Message>::blockingReceive (void) {
Message * sync * p = new Message * sync;
give_slot(p);
return p; //suspends here if slot is empty

}
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4.6 Examples

4.6.1 Producer/Consumer

Motivation Our first example is a simple illustration of how to instantiate
and use a basic asynchronous channel.

Problem Description Two processes, a producer and a consumer, com-
municate over a channel. The producer creates data which the consumer
then uses.

AChannel<float> C; //declaration of basic asynchronous channel
const int N = 10; //number of iterations

void Producer (void) {
float out_data;
for (int i=0; i<N; i++) {
produce (&out.data);
C.nonblockingSend(out.data) ;
}

}

void Consumer (void) {
float * in_data;
for (int i=0; i<N; i++) {
in_data = C.blockingReceive();
consume (*in._data);
delete in_data;
}
}

main()

{
par {
Producer();
Consumer () ;

}
}

Discussion In this example, a channel of floats is created using the usual
C++ template instantiation mechanism. Notice that the consumer receives
a pointer to a float value, and that it is up to the consumer to deallocate
this memory (with delete).
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4.6.2 Dirichlet’s Problem

Motivation Arrays of channels can be declared and used. Channels should
be passed to functions as reference parameters.

Problem Description Each process in a mesh begins with an initial
value. At each iteration, every process calculates its new value as a weighted
average of its old value and the values of its neighbours. The problem is to
find the final values to which the processes converge.

const int size = 7; //size of mesh (no. of cells on a side)
const int N = 100; . //number of iterations

typedef float VType; //type of values stored and communicated

VType Cell (AChannel<VType> &f_left, AChannel<VType> &f right,
AChannel<VType> &f_above, AChannel<VType> &f_below,
AChannel<VType> &t_left, AChannel<VType> &t.right,
AChannel<VType> &t_above, AChannel<VType> &t _below,
VType value) {

VType *left_val, sright_val, *above.val, *below.val;
for (int time=0; time<N; time++) {
par {
t_left.nonblockingSend(value);
tright.nonblockingSend(value);
t.above.nonblockingSend(value);
t_below.nonblockingSend(value) ;
left.val = f_left.blockingReceive();
right.val = f_right.blockingReceive();
above_val = f_above.blockingReceive();
below.val = f below.blockingReceive();
}
value = (4+value + xleft_val + *right_val +
+above_val + *below.val )/8.0;
par {
delete left.val;
delete right.val;
delete above.val;
delete below.val;
}
}
return value;

}

VType Boundary (AChannel<VType> &f_int, AChannel<VType> &t.int,
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const VType value) {
VType * in.val;
parfor (int time=0; time<N; time++) {
par {
t_int.nonblockingSend(value);
in_val = f_int.blockingReceive();
delete in_val;

}
}

return value;

}

void
main ()

AChannel<VType> toright[size]l[size]l, to_left[size] [size],
to_above[size] [size], tobelow[size][size];
//toz[i][j] denotes Cell ij’s output channel in direction z

parfor (int i=1; i<size-1; i++) {
par {
Boundary(to.above([1][i],tobelow[0][i], i);
Boundary(toright[i] [size-2],toleft[i] [size-1],it+size);
Boundary(tobelow[size-2][i],to.above[size-1]1[i], i+sizex2);
Boundary(toleft[il[1],toxright[i][0],i+size*3);
parfor (int j=1; j<size-1; j++)

Cell(toright[il[j-1], toleft[il[j+1],
tobelow[i-1]1[j], to.aboveli+1]1[j],
toleft[il[j1, toxight[il[j],
to.abovel[i][j], tobelow[il[jl1,0);

} /xparx/
} /+parfors/

Discussion A mesh of processes communicating via channels can also be
set up by recursion, as is done in [6, Section 8.2]. This avoids the declaration
of a global array of channels. An iterative approach was chosen here for the
sake of clarity of code and to illustrate the integration of channels and arrays.

Also note that the channels are passed as reference parameters. Be-

cause of the pass-by-value semantics of C++, if a channel is not passed by
reference, a local copy of the channel is made. Sends and receives performed

on this local copy do not affect the original channel.
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Figure 4.4: Mesh Structure for Dirichlet’s Problem

4.6.3 Mutual Exclusion with a Token Ring

Motivation User-defined structures can be sent over channels. Channels
can have multiple writers.

Problem Description We have a collection of processes that require mu-
tually exclusive access to a critical section. Each process is decomposed into
a server and a client process. The servers are arranged in a ring. A token is
used to control access to the critical section. The token is passed clockwise
around the ring and requests for the token are passed counterclockwise.

const int size = 10; //number of servers in token ring
const int N = 20; //number of iterations

enum MType {TOKEN, C_REQUEST, S_REQUEST};

void Client (int id, AChannel<MType> *In.Msgs,
AChannel<MType> *Out.Msgs) {
for (int i=0; i<N; i++) {

/*non-critical sectionx/

Out _Msgs—nonblockingSend (C.REQUEST) ; //request to enter cs
In_Msgs—blockingReceive(); //receive token from server
/*critical sectionx/

Out_Msgs—nonblockingSend(TOKEN);  //return token at end of cs

}
}

void Server (int id,
AChannel<MType> *In_Msgs, AChannel<MType> *Prev_Dut,
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Figure 4.5: Token Ring of Processes for Mutual Exclusion
to a Critical Section

AChannel <MType> *Next_Out, AChannel<MType> #Clt_Dut) {
//definition omitted for brevity

void createring global (void)

{
//form a ring of size servers (doubly linked)
//this is done with a global array of channels

AChannel <MType> *S_Chan[size], *C_Chan[sizel;

parfor (int i=0; i<size; it++)
S_Chan[i] = new AChannel<MType>;

parfor (int j=0; j<size; j++) {
C_Chan(j] = new AChannel<MType>;
spawn Server (j, S-Chan[j], SChan[(j+size-1)%size],

S_Chan[(j+1)%size], C_Chan[jl);

spawn Client (j, CChan[j], SChan[jl);

}

}

void createring it (void)

//form a ring of size servers (doubly linked)
//this is done with iteration
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AChannel<MType> *mine, *prev, *next, *client;
AChannel<MType> *first_inC = new AChannel<MType>;
AChannel<MType> *last_inC = new AChannel<MType>;
mine = first_inC;
prev = last.nC;
for (int i=0; i<size; i++) {
if (i<size-2) next = new AChannel<MType>;
else if (i==size-2) next = last.inC;
else /*(i==size-1)*/ next = first.inC;
client = new AChannel<MType>;
spawn Server (i, mine, prev, next, client);
spawn Client (i, client, mine);
prev = mine;
mine = next;
}
}

void createringrec (int low, int high,
AChannel<MType> *&LeftIn, AChannel<MType> *&RightIn,
AChannel<MType> sLeftOut, AChannel<MType> *RightOut) {
//form a ring of size servers (doubly linked)
//this is done with recursion

if (low > high) {
LeftIn = RightOut;
RightIn = LeftOut;

else {

int mid = (low+high)/2;

AChannel<MType> *myChan = new AChannel<MType>;

AChannel<MType> smyLeft, smyRight;

createring.rec (low, mid-1, LeftIn, myLeft,
LeftOut, myChan);

createring.rec (mid+1, high, myRight, RightIn,
myChan, RightOut);

AChannel<MType> * client = new AChannel<MType>;

spawn Server (mid, myChan, myLeft, myRight, client);

spawn Client (mid, client, myChan);

void
main()

{

printf ("Starting global array version....\n");
createring.global();
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printf ("done.\n\n");

printf ("Starting iterative version....\n");
createring.it();
printf ("done.\n\n");

printf ("Starting recursive version....\n");
AChannel<MType> *Loop = new AChannel<MType>;
AChannel<MType> xLeft, *Right;
createringrec(l,size-1,Left,Right,Loop,Loop);
AChannel<MType> * client = new AChannel<MType>;
spawn Server (0, Loop, Right, Left, client);
spawn Client (0, client, Loop);

printf ("done.\n\n");

Discussion In this example, each server has a unique channel on which
it alone receives messages. Three other processes send messages on this
channel: the next server in the ring sends requests for the token, the previous
server in the ring sends the token, and the server’s client sends requests to
enter the critical section. This functionality is achieved by giving each writer
a pointer to the server’s channel. Having multiple writers to a single channel
can be seen as a merge of multiple channels.

Requests
& Toke

Tokens uests

Figure 4.6: Multiple Writers to a Single Channel

Three functions are given which create the required structure. The
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first uses an array of channels. Server i sends to channels ¢ — 1 and 7 + 1.
The second function creates the ring structure dynamically, using iteration.
Notice how a channel is created once, and then pointers to the channel are
manipulated. The third function uses recursion to dynamically create the
ring structure. Each level of recursion creates a doubly linked list of channels
and returns a pointer to the leftmost and rightmost of these channels. Again
notice that no copying or explicit merging of channels is required.

4.7 Correctness

We show that the conjunction of equations (4.3) through (4.10) is an invari-
ant of the program. The equations hold initially because EmptySlots and
Undelivered are empty, and cS, cR, and iR are zero. Next, we show that
the equations are maintained by providing the annotated programs for the
member functions of the channel.

Annotated Program for Give_Slot

template <class Message>
atomic void AChannel <Message>::give slot(Message * sync * p)
{

// BEGIN ASSERTIONS

// (4.3) - (4.10)

// END ASSERTIONS

// iR++;

// BEGIN ASSERTIONS

// #EmptySlots = iR - cR = 1
// (4.4) - (4.10)

// END ASSERTIONS

if (Undelivered.isempty()) {
// BEGIN ASSERTIONS
// #Undelivered = 0
// #EmptySlots = iR - cR - 1
/l (4.4) - (4.10) '
// END ASSERTIONS
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EmptySlots.enqueue(p);

// BEGIN ASSERTIONS
// #Undelivered = O
// (4.3) - (4.10)
// END ASSERTIONS

}
else {

// BEGIN ASSERTIONS

// #Undelivered > O

// cR < cS

// #EmptySlots = 0

// #EmptySlots = iR - cR - 1

// (4.4) - (4.10) _
// END ASSERTIONS

p=Undelivered.dequeue();
// cR++;

// BEGIN ASSERTIONS
// #EmptySlots = 0
// (4.3) - (4.10)
// END ASSERTIONS

}

// BEGIN ASSERTIONS
// (4.3) - (4.10)
// END ASSERTIONS

}

Annotated Program for Nonblocking Send

template <class Message>
atomic void AChannel <Message>::nonblockingSend(const Message &M)

{

// BEGIN ASSERTIONS
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/] s(s) = M
// (4.3) - (4.10)
// END ASSERTIONS

Message* q = new Message (M);

// BEGIN ASSERTIONS
/! s(cs) = *q

// (4.3) - (4.10)
// END ASSERTIONS

if (EmptySlots.isempty()) {
// BEGIN ASSERTIONS
// #EmptySlots = 0
/1 8(cs) = *q
// (4.3) - (4.10)
// END ASSERTIONS

Undelivered.enqueue(q) ;

// BEGIN ASSERTIONS

// #EmptySlots = 0

// Undelivered[#Undelivered-1] = s(cg)
// #Undelivered = cS - cR + 1

// (4.4), (4.6) - (4.10)

// END ASSERTIONS

}

else {
// BEGIN ASSERTIONS
// #EmptySlots > 0
// #Undelivered = 0O
/! s(cs) = *q
// (4.3) - (4.10)
// END ASSERTIONS

EmptySlots.dequeue()=q;
/!l cR++;
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// BEGIN ASSERTIONS

// #Undelivered = 0

/] s(cs)y = slot(cp-1)

// cR < cS + 1

// #Undelivered = cS - cR + 1

// (4.3), (4.4), (4.6), (4.8) - (4.10)
// END ASSERTIONS

}
/! cS++;

// BEGIN ASSERTIONS
// (4.3) - (4.10)
// END ASSERTIONS

}

Annotated Program for Blocking Receive

template <class Message>
Message* AChannel <Message>::blockingReceive(void)
{

// BEGIN ASSERTIONS

// (4.3) - (4.10)
// END ASSERTIONS

Message * sync * p = new Message * sync;
// BEGIN ASSERTIONS

// (4.3) - (4.10)

// END ASSERTIONS

giveslot(p);

// BEGIN ASSERTIONS

// (4.3) - (4.10)
// END ASSERTIONS
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return p;

// BEGIN ASSERTIONS
// (4.3) - (4.10)
// END ASSERTIONS

4.8 Proof of Specification

Proof of (4.1)

TRUE
& { by 4.8,4.3,and 4.5 }

(cR = iR) V (cR = c8S)
& { by 4.7 and definition of cR }

cR > min(iR,cS) A (cR < iR) A (cR L cS)
& { property of min }

cR = min(iR,cS) [

Proof of (4.2) : For any k (0 < k < cR)

(k)
= {by 4.9}
slot )
{ by 4.10 }
sk) O
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Chapter 5

A Transport Layer for
Ported Asynchronous
Channels

5.1 Introduction

A channel can be seen as a pair of ports, rather than as a single mailbox (as
described in chapter 4). Sends are performed on the channel’s out port and
receives are performed on the channel’s in port. The specification of such a
ported channel is precisely the same as that of the Channel object described
in chapter 4.

A transport layer is a collection of member functions and data members
which are added to a ported channel. When a channel connects two pro-
cesses in distinct memory address spaces, the transfer of the message data
(in this case performed via an RPC call) is typically the most time consum-
ing step in a nonblockingSend operation. The transport layer makes this
cost virtually transparent to the calling process by performing the required
message transfer outside of the nonblockingSend operation, and thus al-
lowing this operation to terminate once a local copy of the message has
been made. The capacity of this local buffer (as with the remote buffer) is
determined by the memory limitations of the implementation.

This layer does not add any public member functions, nor any pub-
lic data members, to the ported channel. The specification for this class,
however, is modified to reflect the dissociation between the sending and the
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transmission of a message.

5.2 Specification

Let cS be the number of nonblockingSend() operations executed on the
channel. Let iR and cR be the number of blockingReceive() operations
that have initiated and have completed respectively.

The progress condition is that if at least k¥ nonblockingSend() oper-
ations have completed and at least k¥ blockingReceive() operations have
been initiated, then at least k blockingReceive() operations will termi-
nate.

Vk ::(cS > k)A (iR > k)~ (cR > k) (5.1)

The first safety condition is that the number of blockingReceive()
operations that have completed is bound by number of blockingReceive()
operations that were initiated and the number of nonblockingSend() op-
erations that have completed.

cR < min(iR, cS) (5.2)

In addition, the channel delivers the messages in order. Let s(;) be
the message sent by the (k + 1)** nonblockingSend executed on the chan-
nel, for 0 < k < cS. Let r(;) be the message received by the (k + 1)tk
blockingReceive() executed on the chanmel, for 0 < k < cR. A second
safety condition is that the (k + 1)** message received is the (k + 1)** mes-
sage sent.

Vk:0< k<cR:ry =sx) (5.3)

Note that this is the specification for a channel, which is a pair of ports.

5.3 Design

5.3.1 Channel as a Pair of Ports

A channel is divided into two objects: an Out_Channel on which
nonblockingSend () operations are performed, and an In_Channel on which
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Figure 5.1: Division of Channel into an Out_Channel and an In_Channel

blockingReceive() operations are performed. Each Out_Channel corre-
sponds to precisely one In_Channel. An Out_Channel contains a data mem-
ber called Dest which is a pointer to the corresponding In_Channel.

The Out_Channel constructor must be passed the address of the
In_Channel to which it is to be linked. Thus, an Out_Channel is associ-
ated with exactly one, and always the same, In_.Channel.

An In_Channel object is exactly the Channel object described in chap-
ter 4. We rename Channel: :nonblockingSend() to In_Channel:: hear()
to avoid confusion with the nonblockingSend() member of Out_Channel.

5.3.2 Message Transfer by RPC

The transfer of the message data of an Out_Channel is performed by a remote
procedure call of the corresponding In_Channel’s hear() member function.
The CC++ keyword global is used to indicate that the Dest pointer is
valid across distinct memory address spaces. Also, the CC++ operators <<
void and >> void are invoked for the message since it is a parameter in the
RPC. For a more complete discussion of these CC++ constructs, see [15]
and [12].

5.3.3 Local Copy of Messages

The purpose of the transport layer is to make the cost of the physical transfer
of data to a remote (non-local) address space as transparent to the sending
process as possible. Since an asynchronous send operation will not wait
for an acknowledgement from the remote destination, its specification will
often include the condition that on termination, the message has left the
local node (and hence it is safe to deallocate this space). Thus, the transport
layer must make a local copy of the message being sent before permitting the
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send operation to terminate. The sending process may then safely deallocate
the original message, for it is the copy made by the transport layer that will
(eventually) be transmitted. These local copies waiting to be transmitted
are stored in a queue Untransported. Because of this local copying, a copy
construct must be defined for the Message type if it requires any form of
deep copying.

- ) ( ~

Untransported

i NonblockingSend (M) ; Untransported

e z

local copy of
message made
( ) ( ™)
g =7
Mcopy
= =
NonblockingSend (M)

has terrainaed Ontransported

===

Figure 5.2: Local Copy of Message

J

5.3.4 Performance Considerations

Because the transport layer actually involves making an extra copy of each
message, this optimization is appropriate only under certain circumstances.
A large and complicated structure might have such a high cost associated
with making the local copy that the transport layer would actually degrade
performance. The situation is represented pictorially in Figure 5.3.

It is easy to see that if the objective function is to minimize the delay
of the sending process, then the transport layer represents an improvement
over the regular library whenever the time required for a local copy (labelled



nonblockingSend () and nonblockingSend ()

blockingReceive () initiated terminated
v blockingReceive ()
N =7 terminated
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Receiver al s
Sender [--=--- bl p
Receiver | o ecccccnccccccccccccccaaea :
1 1 1 >
0 le rpc lc+rpe time

— without transport layer
- === with transport layer

Figure 5.3: Time Cost Associated with Transport Layer

1c in Figure 5.3) is less than the time required for the RPC (labelled rpc in
figure). On the other hand, if the objective function is to minimize the sum
of the delay of the sending and receiving processes, then the transport layer
might be justified only when lc < rpc/2. The programmer should be aware
that many subtle issues, such as the distribution of nonblockingReceive()
operations, synchronizations between the sending process and the receiv-
ing process, or the physical distribution of the computation, can greatly
affect the performance of the transport layer and even determine whether it
represents an improvement or a degradation.

5.3.5 Access to Untransported Queue

The principal problem to be solved is that of synchronization between the
sending process (or producer) which is adding messages to the Untransported
queue, and the transporting process (or consumer) which is removing mes-
sages from this queue. When the queue is empty, the transporting process
should suspend, until a message is added by a sending process. Conversely,
the transporting process should remain active so long as the queue is non-
empty. (See Figure 5.4)

This is precisely the behaviour provided by a semaphore mechanism.
The sending process issues a V() operation on the semaphore after having
enqueued its message, and the transporting process issues a P() prior to
dequeuing the message it will copy to the remote destination. The value of
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Figure 5.4: Interaction Between Sending and Transporting
Processes via the Untransported Queue

this semaphore, then, is the number of elements contained in the queue.

5.4 Implementation State and Properties

In this section we give the invariants for the transport layer, which is en-
tirely contained in the Qut_Channel object. We will use these invariants in
conjunction with the specification for the In_Channel object to prove the
implementation meets the specification outlined in section 5.2.

The implementation of the In_Channel object is precisely the same as
that given in chapter 4, but with the nonblockingSend() member function
being named hear() instead. We can therefore use the proof in chapter 4 to
conclude that the implementation of the In_.Channel object meets the spec-
ification given in chapter 4. Replacing occurences of ¢S in this specification
with cH (the number of completed hear () operations) and occurences of s(;)
with h(;) (the (i + 1)t* message heard), we have the following specification
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for In_Channel:

cR = min(iR, cH)

Vk:OSk<CR:I(k)=h(k)

A
—

—~~
(2 B |
. .
(V7]

~

We make use of the semaphore object, as specified in chapter 2. Thus.
we have:

cP = min(iP,sq +cV) (5.6)
Vi:i>1:terminated(P;) = terminated(P;_) (5.7)

5.4.1 State
The state of the transport layer is given by:

1. A queue of untransported messages called Untransported. Recall cH
is the number of RPC invocations of the In_Channel’s hear() member
function that have completed.

cS = #Untransported+ cH (5.8)

where #Untransported is the number of elements in the Untransported
queue.

Messages are placed into, and retrieved from, the queue Untransported
in order.

¥j :0 < j < #Untransported : Untransported[j] = s(cay;) (5.9)

where Untransported|j] is the (j+1)** element of the Untransported
queue.

2. The state of the semaphore used to synchronize the sending and the
transporting process.

cS = cV (5.10)

5.4.2 Properties

Ordering Requirement The transport layer transmits the messages in
order.
Vk:OSk<CH:S(k)=h(k) (5.11)
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5.5 Implementation

template <class Message>
class Out_Channel {
private:
Queue<Message> Untransported;
In_Channel<Message> * global Dest;
Semaphore S;

atomic void transmit(void);
void transport(void);

public:
Out_Channel (In_Channel<Message>#*global);
atomic void nonblockingSend(const Message &);

}s

Constructor

template <class Message>
Out_Channel<Message>::Out_Channel (In_Channel<Message> *
global d) : s(0) {

Dest = d;

spawn transport();

}

Transmit

template <class Message>

atomic void Out_Channel<Message>::transmit(void) {
Message * nextmessage = Untransported.dequeue();
Dest—hear (*next_message) ;
delete next_message;

}

Transport

template <class Message>
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void Out_Channel<Message>::transport(void) {
while (TRUE) {
S.PO;
transmit();
}
}

Nonblocking Send

template <class Message>
atomic void Out_Channel<Message>::nonblockingSend(const
Message &M) {
Message * q = new Message (M);
Untransported.enqueue(q) ;
S.VO;

}

5.6 Examples

5.6.1 Producer/Consumer

Motivation A pair of ports is linked to form a channel.

Problem Description As in chapter 4, two processes, a producer and a
consumer, communicate over a channel. The producer creates data which
the consumer then uses.

#define N 20 //number of iterations

In_Channel<float> inC;
Out_Channel<float> outC(&inC);

void Producer (void) {
float out_data;
for (int i=0; i<N; i++) {
out_data = producedata();
outC.nonblockingSend(out. data);

}
}

void Consumer (void) {
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float * in._data;

for (int i=0; i<N; i++) {
in_data = inC.blockingReceive();
consume.data(*in.data);
delete in.data;

}
}

main ()

{
par {
Producer();
Consumer() ;

}
}

Discussion The linking of portsis done at creation time of the Out_Channel
object. Neither process need have any knowledge of the transport layer

optimization being performed. The above code would not change if this

optimization were not present.

Similarly, all the examples provided in chapter 4 could be repeated
here. The only difference would be that each channel would consist of an
In_Channel and an Out_Channel pair, linked together. It is important to
note that this division of the Channel object corresponds to a modification
in our view of a channel as a single mailbox, to a channel as a pair of ports.
This modification does not represent a change in the public interface of a
channel induced by the transport layer. The same code could be run on a
channel library with or without this optimization.

5.7 Correctness

We show that the conjunction of equations (5.8) through (5.11) is an invari-
ant of the program. The equations hold initially because Untransported
is empty, and cH and cS are zero. Next, we show that the equations are
maintained by providing the annotated programs for the relevant member
functions of the Out_Channel class.

Annotated Program for Transmit

template <class Message>
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atomic void Out_Channel <Message>::transmit(void)

{

// BEGIN ASSERTIONS
// #Untransported > 0
// (5.8) - (5.11)

// END ASSERTIONS

Message * next_message = Untransported.dequeue();

// BEGIN ASSERTIONS

// cS = #Untransported + cH + 1

// Vj:0 < j < #Untransported : Untransported[j] = ScH+j+1
// next_message = S(cp)

// (5.10), (5.11)
// END ASSERTIONS

Dest->hear (*next_message) ;

/| cH++;

// BEGIN ASSERTIONS

/1 S(cu-1) = hc-1)
// (5.8) - (5.11)
// END ASSERTIONS

delete next_message;

// BEGIN ASSERTIONS

/1 8(ci-1) = Rch-1)
// (5.8) - (5.11)
// END ASSERTIONS

Annotated Program for Transport

template <class Message>
void Out_Channel <Message>::transport(void)

{

// BEGIN ASSERTIONS
// cH=0
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// (5.8) - (5.11)
// END ASSERTIONS

while (TRUE) {

// BEGIN ASSERTIONS
// (5.8) - (5.11)
// END ASSERTIONS

S.PQ;

// BEGIN ASSERTIONS
// #Untransported > 0
// (5.8) - (5.11)

// END ASSERTIONS

transmit();

// BEGIN ASSERTIONS
// #Untransported > 0
// (5.8) - (5.11)

// END ASSERTIONS

Annotated Program for nonblockingSend

template <class Message>
atomic void Out_Channel <Message>::nonblockingSend(const Message &M)

{

Message * q = new Message (M);
// BEGIN ASSERTIONS

/] 8(cs) = M

// (5.8) - (5.11)

// END ASSERTIONS

Untransported.enqueue(q)
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// BEGIN ASSERTIONS

// Untransported[#Untransported-1] = M
// S(cs) = M

// #Untransported > O

// cS = #Untransported + cH - 1

// (5.9) - (5.11)

// END ASSERTIONS

S.VQ);

// BEGIN ASSERTIONS

// Untransported[#Untransported-1] = M
/] scsy = M

// #Untransported > O

// cS = #Untransported + cH - 1

// cS =¢cV -1

// (5.9), (5.11)

// END ASSERTIONS

/] cS++;

// BEGIN ASSERTIONS

// Untransported[#Untransported-1] = M
/] s(cs) = M

// #Untransported > 0

// (5.8) - (5.11)

// END ASSERTIONS

5.8 Proof of Specification

Lemma A

(V2 k)A(cP=j < k)~ (V2 k) A(cP =] +1))

Proof: We establish this result by showing that both of the following propo-

sitions are true:
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((cV>k)A(cP=j7<k)) unless ((cV>k)A(cP=j+1))

This is true because stable(cV > k) and because cP is monotonically
increasing.

Jtransition t:: {(cV>k)A(cP =7 < k)}t{(cV>k)A(cP=7+1)}

This transition is the P() operation in the transport() member func-
tion. This follows from the specification of the semaphore object ((5.6),
(5.7)) and from the topology of the transport() function.

a

Lemma B
((cV 2 k) A (cP < k))~ ((cV 2 k) A (cP > k))

Proof: from Lemma A, using induction on k — j.
Base case. For j =k -1

(cV 2 k) A (cP =7)
~ { by Lemma A }
(V> Kk)A(cP =k)
= {}
(eV>k)A(cP 2 k)
Inductive hypothesis. Suppose that for 0 < j <k -1
((cV 2 k) A (cP = j+ 1)~ ((cV 2 K) A(cP > K))

Inductive step.

(cV2 k) A (cP =)

~ { by Lemma A }
(V2 k) A (P =j+1)

& { by inductive hypothesis }
(V> k)A(cP 2 k)
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Proof of (5.1)

(cS>k)A(iR > k)
e  {by5.10}
(V> k)A(iR > k)
~ { by Lemma B }
(cP > k)A (iR > k)
~ { by topology of transport() }
(cH> k) A (iR > k)
& { property of min }
min(cH, iR) > k
& {by5.4}
cR>k [

Proof of (5.2)

TRUE
& {by 54}
cR = min(iR, cH)
=> {by 5.8}
cR = min(iR,cS) 0O

Proof of (5.3) : For any k such that 0 < k < cR,

(k)
= { by 5.5 }

hx)
{ by 5.11 }

sy O
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Chapter 6

Conclusion

We have presented here a library integration of three imperative synchroniza-
tion and communication paradigms in CC++: semaphores, monitors, and
asynchronous channels. Each construct has been specified formally and im-
plemented. The implementation of each library has been rigorously proven
to meet its specification. Example programs have been given to illustrate
the usefulness of these libraries and demonstrate the ease with which all of
these concepts can be used in CC++.

It is interesting to note the brevity and simplicity of the proofs of cor-
rectness for these libraries. In each case the code was annotated with a
few assertions to establish the invariance of a collection of properties, and
then these properties were shown to imply the specification. Only predicate
logic was required in each case, since the specifications were given entirely
in terms of safety properties. This was possible because of the concept of
atomicity in CC++. On the other hand, it appears that the full power of
atomicity was not required. The degree to which a more limited version of
atomicity is sufficient for general nondeterministic and reactive programs is
an interesting topic worth further investigation.

Several extensions present themselves:
o The development and verification of libraries to support additional
imperative synchronization and communication mechanisms, for ex-

ample: rendezvous, synchronous message passing, conditional critical
regions, and path expressions.

e The addition of libraries to support other parallel programming para-
digms, for example: functional programming, logic programming, and
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data parallelism.

e The creation of techniques for restricting nondetermism, for example:
prohibiting more than one process from having access to the same
channel or port.

We are encouraged by the preliminary examples that these verified li-
braries will be of great value to programmers.
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