On the Quadratic Convergence of the Simplified Mizuno-Todd-Ye Algorithm for Linear Programming

Clovis C. Gonzaga
Richard A. Tapia

CRPC-TR92293
June 1992

On the Quadratic Convergence of the Simplified Mizuno-Todd-Ye Algorithm for Linear Programming*

Clovis C. Gonzaga† Richard A. Tapia ‡

June, 1992 (revised November 1992)

Keywords: Linear programming, primal-dual interior-point algorithm, predictor-corrector algorithm, quadratic convergence

Abbreviated title: Quadratic Convergence of Mizuno-Todd-Ye

AMS (MOS) subject classification: 49M, 65K, 90C

*This research was initiated in February 1992 while the first author was visiting the Center for Research on Parallel Computation, Rice University. A preliminary version of this paper was presented at the Fourth SIAM Meeting on Optimization, Chicago, Illinois, May 1992.

†Department of Systems Engineering and Computer Science, COPPE-Federal University of Rio de Janeiro. Cx. Postal 68811 21945 Rio de Janiero, RJ Brazil. Research supported in part by NSF Grant DMS-8920550 while the author was visiting the Center for Applied Mathematics, Cornell University.

Abstract

It is known that the Mizuno-Todd-Ye predictor-corrector primal-dual Newton interior-point method generates a duality gap sequence which converges quadratically to zero, and this is accomplished with an iteration complexity of $O(\sqrt{nL})$. Very recently the present authors demonstrated that the iteration sequence generated by this method converges, and this convergence is to the analytic center of the solution set. In the current work we show that within a finite number of iterations the Newton corrector step can be replaced with a simplified Newton corrector step and the resulting algorithm maintains $O(\sqrt{nL})$ iteration complexity, quadratic convergence of the duality gap sequence to zero, and convergence of the iteration sequence (however not necessarily to the analytic center). The simplified predictor-corrector algorithm requires only one linear solve per iteration in contrast to the two linear solves per iteration required by the original predictor-corrector algorithm.

1 Introduction and Preliminaries

The basic primal-dual interior-point method for linear programming was originally proposed by Kojima, Mizuno, and Yoshise [4] based on earlier work of Megiddo [8]. This method can be viewed as perturbed and damped Newton’s method applied to the first-order conditions for a particular standard form linear program. They established linear convergence and an iteration complexity bound of $O(nL)$ for this basic algorithm. Soon after Mizuno, Todd, and Ye [11] considered a predictor-corrector variant of the Kojima-Mizuno-Yoshise basic algorithm. In their algorithm the predictor step is a damped Newton step and the corrector step is a perturbed (centered) Newton step. Hence one iteration of the predictor-corrector algorithm requires two linear solves; essentially two Newton steps. Hence when comparing convergence rate results they should technically be considered to be two-step results. Mizuno, Todd, and Ye established linear convergence for their predictor-corrector algorithm and a superior iteration complexity bound of $O(\sqrt{nL})$.

We now briefly give a chronological account of the development of fast (superlinear) convergence for these primal-dual interior-point methods. We refer to the Kojima-Mizuno-Yoshise method as the basic method, and to the Mizuno-Todd-Ye method as the predictor-corrector method. When we
discuss convergence or convergence attributes of one of these methods we are describing the convergence of the duality gap to zero. This interpretation has become standard in this area, even though convergence of the duality gap sequence does not imply convergence of the iteration sequence. The convergence of the iteration sequence is certainly an important issue in its own right and to some extent has been neglected. For an interesting result concerning the convergence of the iteration sequence generated by the basic method see Tapia, Zhang, and Ye [12]. For a definitive result concerning the convergence of the iteration sequence for the predictor-corrector method see Gonzaga and Tapia [3].

Zhang, Tapia, and Dennis [19] demonstrated that under certain assumptions the algorithmic parameters in the basic method could be chosen so that superlinear convergence was obtained for degenerate problems and quadratic convergence was obtained for nondegenerate problems. However, they did not demonstrate that polynomial complexity would be retained. Zhang and Tapia [18] demonstrated that the algorithmic parameters in the basic algorithm could be chosen so that the polynomial complexity bound was maintained and superlinear convergence was obtained for degenerate problems while quadratic convergence was obtained for nondegenerate problems. Ye, Tapia, and Zhang [16] demonstrated that the predictor-corrector algorithm was superlinearly convergent for degenerate problems and quadratically convergent for nondegenerate problems while maintaining its $O(\sqrt{n}L)$ iteration complexity. McShane [6] independently obtained a similar result. Up to this point all superlinear convergence results assumed that the iteration sequence converged. Ye, Güler, Tapia, and Zhang [15], and independently Mehrotra [9], based on Ye, Tapia, and Zhang [16] demonstrated the surprising result that neither the nondegeneracy assumption nor the assumption of iteration sequence convergence was needed for the quadratic convergence of the predictor-corrector algorithm.

In this paper we add to the literature on the predictor-corrector algorithm by demonstrating that its quadratic convergence and $O(\sqrt{n}L)$ complexity are retained if one replaces the Newton corrector step with a simplified Newton step, i.e., the Jacobian from the Newton predictor step is used also in the computation of the corrector step. Hence the corrector step only requires a back-solve, and the complete iteration only requires one linear solve. Actually the Newton corrector step cannot be replaced with a simplified Newton
corrector step at the beginning of the iterative process, but only after a particular criterion is satisfied. We demonstrate that this criterion will be satisfied within a finite number of iterations. We also show that the simplified algorithm generates an iteration sequence which is convergent, but not necessarily to the analytic center.

The paper is organized as follows. In the remainder of this section we introduce our notation and several fundamental background notions. In Section 2 we discuss the primal-dual Newton step and the primal-dual simplified Newton step and derive several properties concerning these two steps. Some results on scaled projections from Gonzaga and Tapia will be collected in Section 3. These results will be used in Section 5. The Mizuno-Todd-Ye predictor-corrector algorithm is presented in Section 4. Section 5 begins with the presentation of the simplified predictor-corrector algorithm and then turns to establishing our convergence theory for the simplified predictor-corrector algorithm. In Section 6 we make some observations that imply that quadratic convergence is optimal for both the predictor-corrector method and its simplified variant. We indicate that cubic convergence might be obtained by appropriately modifying the corrector step.

Given a vector \(x, d, \phi \), the corresponding upper case symbol denotes as usual the diagonal matrix \(X, D, \Phi \) defined by the vector.

We denote component-wise operations on vectors by the usual notations for real numbers. Thus, given two vectors \(u, v \) of the same dimension, \(uv, u/v, \) etc. denotes the vectors with components \(u_i v_i, u_i/v_i, \) etc. This notation is consistent as long as component-wise operations are given precedence over matrix operations. Note that \(uv \equiv Uv \) and if \(A \) is a matrix, then \(Auv \equiv AUv \), but in general \(Auv \neq (Au)v \).

We frequently use the \(O(\cdot) \) and \(\Omega(\cdot) \) notation to express a relationship between functions. Our most common usage will be associated with a sequence \(\{x^k\} \) of vectors and a sequence \(\{\mu^k\} \) of positive real numbers. In this case \(x = O(\mu) \), or \(x^k = O(\mu^k) \), means that there is a constant \(K \) (dependent on problem data) such that for every \(k \in \mathbb{N} \), \(\|x^k\| \leq K\mu^k \). Similarly, \(x = \Omega(\mu) \), or \(x^k = \Omega(\mu^k) \), means that there is \(\epsilon > 0 \) such that for every \(k \in \mathbb{N} \), \(\|x^k\| \geq \epsilon\mu^k \).
The primal and dual linear programming problems are:

\[
\begin{align*}
\text{(LP)} & \quad \text{minimize} \quad c^T x \\
& \quad \text{subject to} \quad Ax = b \\
& \quad \quad x \geq 0,
\end{align*}
\]

and

\[
\begin{align*}
\text{(LD)} & \quad \text{maximize} \quad b^T y \\
& \quad \text{subject to} \quad A^T y + s = c \\
& \quad \quad s \geq 0,
\end{align*}
\]

where \(c \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \), \(A \in \mathbb{R}^{m \times n} \). We assume that both problems have optimal solutions, and that the sets of optimal solutions are bounded. This is equivalent to the requirement that both feasible sets have non-empty relative interiors.

Given any feasible primal-dual pair \((\bar{x}, \bar{s})\), the problems can be rewritten as

\[
\begin{align*}
\text{(LP)} & \quad \text{minimize} \quad \bar{s}^T x \\
& \quad \text{subject to} \quad Ax = b \\
& \quad \quad x \geq 0,
\end{align*}
\]

and

\[
\begin{align*}
\text{(LD)} & \quad \text{minimize} \quad \bar{x}^T s \\
& \quad \text{subject to} \quad Bs = Bc \\
& \quad \quad s \geq 0,
\end{align*}
\]

where \(B^T \) is a matrix whose columns span the null space of \(A \). Popular choices for \(B^T \) are an orthonormal basis for the null space of \(A \) and \(B = P_A \), the projection matrix into the null space of \(A \).

The feasible sets for (LP) and (LD) will be denoted respectively by \(\mathcal{P} \) and \(\mathcal{D} \). Their relative interiors will be respectively \(\mathcal{P}^0 \) and \(\mathcal{D}^0 \).

The set of optimal solutions for the primal-dual pair of problems constitutes a face \(F = (F_P, F_D) \) of the polyhedron of feasible solutions, where \(F_P \) and \(F_D \) are respectively the primal and dual optimal faces. By hypothesis, this face is a compact set. It is well known that this face is characterized by a partition \(\{N, B\} \) of the set of indices \(\{1, \ldots, n\} \) such that
\(F_P = \{ x \in \mathcal{P} \mid x_N = 0 \} \) and \(F_D = \{ s \in \mathcal{D} \mid s_B = 0 \} \). In the relative interior of the face, \(x_B > 0 \) and \(s_N > 0 \).

We study algorithms that converge to the optimal face. Our main concern is with the behaviour of the iterates as they approach the optimal face. We want this to happen in such a manner that all limit points are in the relative interior of the optimal face. We shall see later on how this condition can be enforced.

Given \(\mu > 0, \mu \in \mathbb{R} \), the pair \((x, s)\) of feasible primal and dual solutions is the central point \((x(\mu), s(\mu))\) associated with \(\mu \) if and only if

\[
xs = \mu e,
\]

where \(e \) stands for the vector of all ones, with dimension given by the context.

The central path is the curve in \(\mathbb{R}^{2n} \) defined on the positive reals by

\[
\mu \mapsto (x(\mu), s(\mu)).
\]

Thus \((x, s)\) is a central point if and only if

\[
\begin{align*}
xs &= \mu e \\
Ax &= b \\
Bs &= Bc \\
x, s &\geq 0,
\end{align*}
\]

where the columns of \(B^T \) span the null space of \(A \).

The first-order or Karush-Kuhn-Tucker (KKT) conditions for problem (LP) (or (LD)) are

\[
\begin{align*}
xs &= 0 \\
Ax &= b \\
A^T y + s &= c \\
x, s &\geq 0.
\end{align*}
\]

The perturbed KKT conditions, for perturbation parameter \(\mu > 0 \), are

\[
\begin{align*}
xs &= \mu e \\
Ax &= b \\
A^T y + s &= c \\
x, s &\geq 0.
\end{align*}
\]
Observe that the perturbed KKT conditions are merely the defining relations for the central path and (2) can equivalently be written as 1. Essentially all primal-dual interior-point methods for problem (LP) consist of some variant of the damped Newton's method applied to the perturbed KKT conditions (1) or (2).

2 The Newton and Simplified Newton Steps

When dealing with an iterative procedure we will use the superscript 0 to denote the previous iterate, no superscript to denote the current iterate, a superscript of + to denote the subsequent iterate. In two-step algorithms like the Mizuno-Todd-Ye algorithm described in Section 4 this notation will apply to the current iterate, the intermediate iterate, and the final iterate.

Suppose that \((x^0, s^0)\) and \((x, s)\) have been obtained from a form of Newton's method and are both feasible pairs. The Newton step (or correction) for (1) at \((x, s)\) is given by \((v, u)\) the solution of

\[
\begin{align*}
 xv + su &= -xs + \mu e \\
 Au &= 0 \\
 Bu &= 0,
\end{align*}
\]

and the simplified Newton step for (1) at \((x, s)\) is given by \((v, u)\) the solution of

\[
\begin{align*}
 x^0v + s^0u &= -xs + \mu e \\
 Au &= 0 \\
 Bu &= 0.
\end{align*}
\]

It should be clear that the difference between (3) and (4) is that (3) uses the Jacobian of (1) at \((x, s)\) and (4) uses the Jacobian of (1) at \((x^0, s^0)\).

We introduce some additional notation that will be used throughout the paper. Given a pair \((x, s)\), we define

\[
\begin{align*}
 \mu(x, s) &= x^T s/n \\
 w(x, s) &= x s / \mu(x, s) \\
 \delta(x, s) &= \|w(x, s) - e\| \\
 \phi(x, s) &= (\sqrt{\mu(x, s)})^{-1}.
\end{align*}
\]
When no confusion can arise, we drop the reference to the variables, and continue to use other symbols in a consistent manner. For instance, given a pair \((\bar{x}, \bar{s})\), the parameters above will be denoted simply \(\bar{\mu}, \bar{\omega}\) and \(\bar{\phi}\).

Given a pair \((x, s)\), \(\mu\) is the penalty parameter associated to \((x, s)\), in the following sense: if \((x, s)\) is a central point, then \(xs = \mu e\); otherwise \(\mu\) is the penalty parameter associated with the central point that is nearest the pair \((x, s)\), in terms of a certain proximity measure. The vector \(v\) consists of logarithmic barrier weights associated with \((x, s)\). It characterizes the weighted primal-dual affine scaling trajectory through \((x, s)\), as studied by Monteiro and Adler [11]. The scalar \(\delta\) is a measure of proximity from \((x, s)\) to the central point \((x(\mu), s(\mu))\). The definition of \(\phi\) was done merely for convenience; it will simplify expressions below.

At this point we are interested in obtaining usable closed form solutions for the simplified Newton step and the Newton step. We also derive an interesting property of the simplified Newton step. With an eye towards an application of these closed form solutions to the analysis of the simplified Mizuno-Todd-Ye predictor-corrector algorithm in Section 5, we will replace \(\mu\) in (4) with \(\mu^+\) and \(\mu\) in (3) with \(\gamma \mu\).

Proposition 2.1 The simplified Newton step \((u, v)\) given by (4) with \(\mu\) replaced by \(\mu^+\) can be written

\[
\begin{align*}
 u &= x^0 \phi^0 P_{AX^0 \phi^0} \left(-\frac{xs}{\mu^0} + \frac{\mu^+}{\mu^0} e \right) \\
 v &= s^0 \bar{P}_{AX^0 \phi^0} \left(-\frac{xs}{\mu^0} + \frac{\mu^+}{\mu^0} e \right)
\end{align*}
\]

(6)

where \(\bar{P} = I - P\).

Proof. Assume that instead of (4), the simplified Newton equations are written as

\[
x^0 v + s^0 u = -xs + \mu^+ e, \quad u \in \mathcal{N}(A), \quad v \in \mathcal{R}(A^T)
\]

(7)

where as usual \(\mathcal{N}\) denotes null space and \(\mathcal{R}\) denotes range space.

The solution is obtained by associating a scaling vector

\[
d(x, s) = \sqrt{\frac{x}{s}}
\]
to each pair \((x, s)\).

Using the definitions in (5) and dropping argument references,

\[
d = \frac{x}{\sqrt{s}} = \frac{x}{\phi \sqrt{\mu}} = \frac{\phi \sqrt{\mu}}{s}
\]

(8)

The solution of (7) is obtained by scaling the problems by \(\bar{x} = (d^0)^{-1}x\), \(\bar{s} = d^0 s\) :

\[
\bar{x}^0 \bar{u} + \bar{s}^0 \bar{v} = -\bar{x} \bar{s} + \mu e
\]
\[
\bar{u} \in \mathcal{N}(AD^0)
\]
\[
\bar{v} \in \mathcal{R}(D^0 A^T)
\]

The choice of this scaling becomes clear when we notice that by direct substitution,

\[
\bar{x}^0 = \bar{s}^0 = \sqrt{x^0 s^0}
\]

(9)

Dividing the equation by \(\bar{s}^0\) and using the definitions of scaled variables,

\[
\bar{u} + \bar{v} = -\frac{\bar{x}}{\bar{s}^0} \bar{s} + \mu^+ (\bar{x}^0)^{-1} = \frac{d^0}{x^0} (-xs + \mu^+ e).
\]

Now \(\bar{u}\) and \(\bar{v}\) are the orthogonal decomposition of the right-hand side, given by

\[
\bar{u} = P_{AD^0} \frac{d^0}{x^0} (-xs + \mu^+ e)
\]
\[
\bar{v} = \bar{P}_{AD^0} \frac{d^0}{x^0} (-xs + \mu^+ e),
\]

(10)

where \(\bar{P}_{AD^0} = I - P_{AD^0}\). Finally, \(u = d^0 \bar{u}\) and \(v = (d^0)^{-1} \bar{v}\).

A convenient formulation is obtained by substituting \(d^0 = \frac{1}{\sqrt{\mu}} x^0 \phi^0\) and \((d^0)^{-1} = s^0 / \sqrt{\mu} \phi^0\), and this leads to (6).

The simplified Newton step satisfies an interesting property. This property will turn out to be fundamental to the analysis presented in Section 5.

Proposition 2.2 Let \(x^+ = x + u, s^+ = s + v\) be the simplified Newton iterate, i.e., \((u, v)\) satisfies (7). Then

\[
\mu(x^+, s^+) = \mu^+
\]
Proof. Left multiplying (7) by e^T, we obtain
\[x^0T v + s^0 T u = -x^T s + n \mu^+ \]

From the definition,
\[x^+ T s^+ = x^T s + x^T v + s^T u, \]

since $u^T v = 0$. But $x^0 T v = x^T v$, because $x^0 - x \in \mathcal{N}(A)$ and $v \in \mathcal{R}(A^T)$, and similarly $s^0 T u = s^T u$. Subtracting the expressions above we immediately obtain
\[x^+ T s^+ = n \mu^+, \]

completing the proof. \[\Box\]

In order to obtain closed form solutions for the Newton step (3) with μ replaced by $\gamma \mu(x, s)$, we replace (x^0, s^0) with (x, s) and μ^+ with $\gamma \mu(x, s)$ in the proof of Proposition 2.1. By doing this we obtain the following two different ways of writing the expression for u in this case (the expression for v is similar):
\[
\begin{align*}
u &= -x \phi P_{AX} \phi (w - \gamma e) \quad (11) \\
u &= -x \phi P_{AX} \phi \left(\frac{x s^*}{\mu} - \gamma e\right). \quad (12)
\end{align*}
\]

In (12) s^* is an arbitrary dual solution (not necessarily feasible). This expression holds because given any two dual solutions s an s^*, we have that $P_A s = P_A s^*$, or with any scaling $\tilde{s} = ds$, $P_{ADD} ds = P_{ADD} s^*$. The situation above corresponds to $d = x \phi$.

3 Scaled Projections

In this section we collect some results on scaled projections from Gonzaga and Tapia [3]. These results are extensions of results published by Megiddo and Shub [8]. We use \mathbb{R}_+ to denote the nonnegative reals, and \mathbb{R}_{++} to denote the positive reals.

Consider the primal feasible set for (LP),
\[\mathcal{P} = \{ x \in \mathbb{R}^n \mid Ax = b, x \geq 0 \} \]
and the map

\[d \in \mathbb{R}_+^n, d \neq 0; \rho \in \mathbb{R}^n \mapsto h(d, \rho) = P_{AD}\rho, \]

where \(P_{AD} \) represents the projection matrix into the null space of \(AD \).

We study the behaviour of this map when \(d > 0, d \to \bar{d} \) and \(\rho \to \bar{\rho} \), where \(\bar{d} \geq 0, \bar{d} \neq 0 \), and \(\bar{\rho} \in \mathbb{R}^n \).

Given \(\bar{d} \), we define the index sets \(B = \{i = 1, \ldots, n \mid \bar{d}_i > 0\} \) and \(N = \{i = 1, \ldots, n \mid \bar{d}_i = 0\} \). The variables with indices in \(B \) are called the “large variables,” and the others are called the “small variables.” It is difficult to describe the behaviour of the small variables \(h_N(d, \rho) \) of the scaled projection defined above. The theory of Megiddo and Shub concerns the large variables \(h_B(d, \rho) \). We shall describe this theory conveniently extended to fit our needs.

By definition of a projection, \(h(d, \rho) \) solves the problem

\[
\begin{align*}
\text{minimize} & \quad \|h_N - \rho_N\|^2 + \|h_B - \rho_B\|^2 \\
\text{subject to} & \quad A_B D_B h_B = -A_N D_N h_N.
\end{align*}
\]

(14)

Assume now that \(h_N(d, \rho) \) is given. Then \(h_B(d, \rho) \) solves

\[
\begin{align*}
\text{minimize} & \quad \|h_B - \rho_B\| \\
\text{subject to} & \quad A_B D_B h_B = -A_N D_N h_N(d, \rho).
\end{align*}
\]

(15)

Proposition 3.1 Consider the map \(d, \rho \mapsto h(d, \rho) \) and the points \(\bar{d} \) and \(\bar{\rho} \) defined above. Then when \(d \in \mathbb{R}_+^n, d \to \bar{d} \) and \(\rho \to \bar{\rho} \),

(i) \(h_B(d, \rho) \to P_{AB} D_B \bar{\rho}_B \).

(ii) If \(\bar{\rho}_N = 0 \), then \(h_N(d, \rho) \to 0 \).

Proof. See [3] □

Consider compact sets \(\Gamma \subseteq \mathbb{R}^n \) and \(\Delta \subseteq \mathbb{R}_+^n \), such that for any \(d \in \Delta, d_B > 0 \) and \(d_N = 0 \), where \(\{D, N\} \) is a partition of \(\{1, \ldots, n\} \). We now extend the proposition above for the case of sequences \(\{d^k\} \) in \(\mathbb{R}_+^n \) and \(\{\rho^k\} \in \mathbb{R}^n \) such that \(d^k \to \Delta \) and \(\rho^k \to \Gamma \).

Proposition 3.2 For the situation described above we have the following:

(i) If \(d^k \to \Delta \) and \(\rho^k \to \Gamma \), then

\[h_B(d^k, \rho^k) - P_{AB} D_B \rho_B^k \to 0. \]

\[*A \text{ sequence } \{z^k\} \text{ converges to a set } Z \text{ if } d(z^k, Z) \to 0, \text{ where } d(z^k, Z) = \inf_{z \in Z} \|z^k - z\|. \]
(ii) If \(d^k \to \tilde{d} \in \Delta \) and \(\rho^k \to \tilde{\rho} \in \Gamma \), then
\[
h_B(d^k, \rho^k) - P_{A_B D_B} \tilde{\rho}_B \to 0.
\]
Moreover, this convergence is uniform on \(\Delta \) and \(\Gamma \).

Proof. Implication (ii) follows from (i), since for convergent sequences
\(P_{A_B D_B} \tilde{\rho}_B^k \to P_{A_B D_B} \tilde{\rho}_B \).

To prove (i), assume by contradiction that there exists \(\epsilon > 0 \) and sequences \(\{d^k\} \) in \(\mathbb{R}_++^n \) and \(\{\rho^k\} \) in \(\mathbb{R}^n \) such that for \(k = 1, 2, \ldots \)
\[
\|h_B(d^k, \rho^k) - P_{A_B D_B} \rho_B^k\| > \epsilon.
\] (16)

Since the sequences \(\{d^k\} \) and \(\{\rho^k\} \) are bounded, they must have accumulation points \(\tilde{d}, \tilde{\rho} \), such that for some \(K \subset \mathbb{N} \), \(d^k \xrightarrow{K} \tilde{d} \) and \(\rho^k \xrightarrow{K} \tilde{\rho} \). From the compactness of \(\Delta \) and \(\Gamma \), \(\tilde{d} \in \Delta \) and \(\tilde{\rho} \in \Gamma \). From Proposition 3.1,
\[
h_B(d^k, \rho^k) \xrightarrow{K} P_{A_B D_B} \tilde{\rho}_B,
\]
and since \(D_B > 0 \),
\[
P_{A_B D_B} \rho_B^k \xrightarrow{K} P_{A_B D_B} \tilde{\rho}_B.
\]
Subtracting these last expressions we see that
\[
h_B(d^k, \rho^k) - P_{A_B D_B} \rho^k \xrightarrow{K} 0,
\]
contradicting (16) and completing the proof.

Now we present two facts related to projections and slightly shifted scalings.

Proposition 3.3 Let \(q \in \mathbb{R}^N \) be such that \(\|q - e\|_\infty \leq \alpha \), \(\alpha \in (0, 0.25) \), and consider the projections \(\hat{h} = P_A \rho \), \(\hat{h} = q P_A Q q \rho \). Then \(\|h - \hat{h}\| \leq 0.3\|\hat{h}\| \).

Proof. See [3].

Given a vector \(x \in \mathbb{R}^n \), the following map defines a norm
\[
h \in \mathbb{R}^n \mapsto \|h\|_x = \|x^{-1}h\|.
\]
This is the Euclidean norm of the vector corresponding to \(h \) after a scaling \(\hat{h} = x^{-1}h \). This norm is very usual in interior point methods.

The following result shows that all scaled norms for \(x \) in a compact set in the interior of the positive orthant are uniformly equivalent.
Proposition 3.4 Let \(\Delta \subset \mathbb{R}^n_+ \) be a compact set. Then there is a number \(\Gamma > 0 \) such that for any \(h \in \mathbb{R}^n, x \in \Delta, \)

\[
\frac{1}{\Gamma} \| h \| \leq \| h \|_x \leq \Gamma \| h \|.
\]

Proof. By definition, given \(x \in \Delta, \| h \|_x = \| x^{-1} h \|. \) We immediately obtain

\[
\min_{i=1,\ldots,n} x_i^{-1} \| h \| \leq \| h \|_x \leq \max_{i=1,\ldots,n} x_i^{-1} \| h \|
\]

Since \(x_i, i = 1, \ldots, n \) are bounded away from zero for \(x \in \Delta, \) the scalar \(\Gamma \) must exist, completing the proof.

4 The Mizuno-Todd-Ye Algorithm

The Mizuno-Todd-Ye (MTY) algorithm is a path-following predictor-corrector algorithm. All activity is restricted to a region near the central path, i.e., all points \((x, s)\) generated by the algorithm satisfy

\[
\delta(x, s) = \| w(x, s) - e \| = \left\| \frac{x s}{\mu(x, s)} - e \right\| \leq \alpha,
\]

where \(\alpha \in (0, 0.5) \).

We shall describe a typical iteration of the algorithm and list its properties. Complete proofs can be found in Mizuno, Todd, Ye [10].

Given \(\alpha = 0.1^*, \) a typical iteration begins with feasible \((x^0, s^0)\) such that \(\delta(x^0, s^0) = \| w^0 - e \| \leq \alpha^2/\sqrt{2}. \)

Predictor step: Compute the (affine-scaling) step \((u^0, v^0)\) and \(x = x^0 + u^0, s = s^0 + v^0, \) satisfying

\[
x^0 u^0 + s^0 v^0 = -(1 - \gamma)x^0 s^0, \quad u^0 \in \mathcal{N}(A), \quad v^0 \in \mathcal{R}(A^T),
\]

where \(\gamma \) is such that \(\delta(x, s) = \| w(x, s) - e \| = \alpha. \)

*The original paper uses \(\alpha = 0.5. \) We shall use a comfortable value of 0.1, since this simplifies some formulas ahead.
Corrector step: Compute the (centering) step \((u, v)\) and \(x^+ = x + u, s^+ = s + v\), satisfying

\[xv + su = -xs + \mu e \]

where \(\mu = \mu(x, s) = \gamma \mu^0\).

Mizuno, Todd, and Ye [10] prove that the algorithm is well defined, in the sense that the centering step produces \((x^+, s^+)\) such that \(\delta(x^+, s^+) \leq \alpha^2/\sqrt{2}\). Ye, Güler, Tapia, and Zhang [15] (and independently Mehrotra [9]) prove that the duality gap (or equivalently the parameter \(\mu\)) converges to zero Q-quadratically, i.e.,

\[\mu^+ = \mu(x^+, s^+) = O(\mu^0^2). \]

Since \(\mu^+ = \mu = \gamma \mu^0\), this means that

\[\gamma = O(\mu^0). \]

Bounds on the quantities appearing in the algorithm are given in the propositions below. Let \(\{B, N\}\) be the optimal partition for the linear programming problem, i.e., the index partition associated to the optimal face. It is well known (see Adler and Monteiro [1]) that the central path ends at the analytic center of the optimal face, and that the pairs \((x, s)\) such that \(\|w(x, s) - e\| \leq \alpha\) constitute a neighborhood of the central path corresponding to the bundle of \(w\)-weighted affine-scaling trajectories for \(w\) such that \(\|w - e\| \leq \alpha\). For \(\alpha\) small, the bundle of trajectories ends in a compact neighborhood of the analytic center of the optimal face, contained in the relative interior of the face. Namely, the end points in the primal optimal face are the \(w\)-weighted centers given by

\[x^*(w) = \arg\min \left\{ \sum_{i \in B} w_i \log x_i \mid A_B x_B = b \right\} \]

Hence, the algorithm behaves as follows. As the optimal face is approached (and this happens in polynomial time), \(x_N^k \to 0\), \(s^k_N \to 0\) and \(x^*_B, s^*_N\) remain in small neighborhoods of \(x^*_B\) and \(s^*_N\), the analytic centers of the primal and dual optimal faces.

Actually, it is always true that \(x^k \to x^*\), \(s^k \to s^*\), due to the results proved in Gonzaga and Tapia [3], which we describe.
Proposition 4.1 Consider quantities generated by the MTY algorithm. Then

(i) \(x_N = O(\mu) \), \(s_B = O(\mu) \), \(x_N^0 = O(\mu^0) \), \(s_B^0 = O(\mu^0) \)
(ii) \(u^0 = O(\mu^0) \), \(v^0 = O(\mu^0) \)
(iii) \(u_N = O(\mu) \), \(v_B = O(\mu) \)

Proof. See Lemma 5.2 of [3].

The proposition above shows that the variations in \((x, s)\) due to either an MTY predictor or corrector step are bounded by \(O(\mu)\), with exception of \(u_B\) and \(v_N\). These are the variations in the large variables due to the corrector step.

The following proposition is the main result in Gonzaga and Tapia [3]. It is related to the map that associates to a pair \((x^0, s^0)\) the pair \((x^+, s^+)\) resulting from a MTY iteration. The proposition says that near the optimal face, a MTY iteration causes the large variables to approach the large variables of the analytic center \((x^*, s^*)\) of the optimal face. The proposition describes only the behavior of the primal variables; the dual variables behave in a similar fashion, due to the symmetry of the optimality conditions (1).

The approach to the center is measured in the norm relative to \(x_B^*\), defined for \(h \in \mathbb{R}^n\) by \(\|h_B\|_* = \|(x_B^*)^{-1}h_B\|\).

Proposition 4.2 Consider a sequence (not necessarily generated by the algorithm) \((x^{0k}, s^{0k})\) of primal-dual pairs such that \(\delta(x^{0k}, s^{0k}) \leq 0.1\) and \(\mu^{0k} \to 0\). Then there exists a sequence of positive reals \(\{\epsilon^k\}\) such that \(\epsilon^k \to 0\) and for sufficiently large \(k\),

\[
\|x_B^{0k} - x_B^*\|_* \leq \max\{\epsilon^k, 0.8\|x_B^{0k} - x_B^*\|_*\}.
\]

Proof. See Lemma 6.2 of [3].

This result implies that the iterates approach \((x^*, s^*)\) and thus the sequence generated by the algorithm converges to the central optimum.

We are now concerned with bounding the sum of the variations (corrections) made to either the \(x\)-variable or the \(s\)-variable in either the predictor step or the corrector step in all iterations. The variation in \(x\) due to a predictor step is \(u^0\). By the total variation in \(x\) due to predictor steps we mean \(\sum_k \|u^{0k}\|\). If we do not mention predictor steps or corrector steps we mean both steps. Analogous terminology is used for corresponding situations.
Proposition 4.3 Consider quantities x^{0k}, s^{0k}, x^k, etc. generated by the MTY algorithm starting at $(x^0, s^0)\text{.}$

Then

(i) $\sum_{k=1}^{\infty} \mu^{0k} = O(\mu^{01})$.

(ii) The total variation in x_N and in s_B is bounded by $O(\mu^{01})$.

(iii) The total variation in x_B and in s_N due to predictor steps is bounded by $O(\mu^{01})$.

Proof. To prove (i), it is enough to show that for some constant $\beta \in (0, 1)$, $\mu^{k+1} \leq \beta \mu^k$. This was shown by Mizuno, Todd, and Ye [10] when proving the polynomiality of the algorithm. Now (ii) and (iii) are direct consequences of Proposition 4.1, completing the proof. ■

5 The Simplified Mizuno-Todd-Ye Algorithm

The simplified MTY algorithm is the MTY algorithm with the Newton corrector step replaced by a simplified Newton step. This means that the computation of the projections in (6) for the corrector step are reduced to a back substitution, instead of a complete solution of the system.

We now state the complete algorithm.

Algorithm 5.1 Given $\alpha \leq 0.1$, and feasible (x^{01}, s^{01}) such that $\delta(x^{01}, s^{01}) \leq \alpha/2$, $k=1$.

REPEAT

$x^0 := x^{0k}, s^0 := s^{0k}, \mu^0 := \mu(x^0, s^0)$.

Predictor: Compute $u^0, v^0, x := x^0 + u^0, s := s^0 + v^0$ satisfying
$x^0v^0 + s^0u^0 = -(1 - \gamma)x^0s^0, \quad u^0 \in N(A), v^0 \in R(A^T),$
where γ is such that $\delta(x, s) = \alpha$.

Simplified Corrector: Set $\mu := \mu(x, s)$. Solve
$x^0v + s^0u = -xs + \mu e, \quad u \in N(A), v \in R(A^T),$
and set $x^+ := x + u, s^+ := s + v.$
Safeguard: If $\delta(x^+, s^+) > \alpha/2$, then discard (x^+, s^+) and compute the Newton corrector step

$$x\hat{u} + s\hat{v} = -xs + \mu e, \quad \hat{u} \in \mathcal{N}(A), \hat{v} \in \mathcal{R}(A^T),$$

and set $x^+ := x + \hat{u}, \ s^+ := s + \hat{v}$.

Subsequent iterate:

$$x^{0k+1} := x^+, \ s^{0k+1} := s^+, \ k := k + 1$$

UNTIL convergence.

The algorithm uses a simplified Newton iteration in the corrector step. If the simplified corrector produces the reduction in the proximity δ that ensures the quadratic convergence of the algorithm, i.e., if $\delta(x^+, s^+) \leq \alpha/2$, then the step is accepted. Otherwise the simplified step is discarded and the algorithm performs a Newton corrector step.

Two things must be proved: first that the iterates are still convergent, not necessarily to the analytic center of the optimal face, and second, that the safeguard cannot be activated more than a finite number of times.

The predictor step is the same as that for the MTY algorithm. Our analysis will be based on a comparison of the simplified and exact corrector steps. The conclusions will be the following: For points near the optimal face

(i) The simplified corrector step does not centralize the large variables. The variation in x_B and s_N due to simplified steps will be bounded by $O(\mu)$.

(ii) The behaviour of the small variables x_N and s_B tends to be identical in both methods.

These two facts will be proved and then used to contradict the hypothesis that the safeguard is activated an infinite number of times.

We begin by studying the behaviour of the large variables.

Proposition 5.2 Consider the directions (u^k, v^k) and (\hat{u}^k, \hat{v}^k) generated at iteration k of Algorithm 5.1 (independently of which one is actually accepted by the algorithm). Then there exist a number $K > 0$ and sequences $\{\theta_x^k\}$, $\{\theta_s^k\}$ in \mathbb{R}_+ such that $\theta_x^k \to 0$, $\theta_s^k \to 0$ and

$$\|u_B^k\| \leq \gamma^k K(\|\hat{u}_B^k\| + \theta_x^k), \ |v_N^k| \leq \gamma^k K(\|\hat{v}_N^k\| + \theta_s^k).$$

17
Proof. We shall prove the result for u_k^B. The proof of the other result is similar.

Dropping the index k for notational simplicity, the primal directions are computed from (6):

$$u = x^0 \phi^0 P_{A^0} \phi^0 \left(-\frac{x^s}{\mu^0} + \frac{\mu}{\mu^0} e \right),$$

$$\hat{u} = x \phi P_{A^0} \phi \left(-\frac{x^s}{\mu} + e \right).$$

Substituting $\mu = \gamma \mu^0$, we obtain for $\rho = \left(-\frac{x^s}{\mu} + e \right)$,

$$\frac{u}{\gamma} = x^0 \phi^0 P_{A^0} \phi^0 \rho,$$

$$\hat{u} = x \phi P_{A^0} \phi \rho.$$

The points x^k and x^0^k approach the relative interior of the optimal face, converging to a small compact neighborhood of the central optimum x^*. The vectors ϕ and ϕ^0 have the following bounds.

By construction, $w_i^0 \in [0.95, 1.05], w_i \in [0.9, 1.1]$. Since $\phi_i = 1/\sqrt{w_i}$ by definition, the following bounds can be easily checked:

$$\phi^0_i \in [0.97, 1.03], \phi_i \in [0.95, 1.06], \phi^0_i / \phi_i \in [0.92, 1.08].$$

Thus $x^0 \phi^0$ and $x \phi$ also converge to compact sets. Since $\|\rho\| = \delta(x, s) \leq 0.1$, the vectors $\phi \rho$ and $\phi^0 \rho$ are also in compact sets, and we can use Proposition 3.2 to obtain

$$\frac{u_B}{\gamma} - x^0 \phi^0 P_{A^0} x^0 \phi^0 \phi^0 \rho_B \to 0,$$

$$u_B - x \phi \rho_B P_{A^0} x^0 \phi^0 \phi_0 \rho_B \to 0.$$ \hspace{1cm} (18)

The scaled projections above are almost in the format required by Proposition 3.3, on slightly shifted scalings. To put them in the desired format, let us write

$$\rho_B = x_B^0 (x_B^0)^{-1} \rho_B.$$
Due to Proposition 4.1,

\[x_B = x_B^0 + u_B^0 = x_B^0(e + O(\mu^0)) \]

(19)

It follows that \((x_B^0)^{-1} = x_B^{-1}(e + O(\mu^0))\), since \(x_B = \Omega(1)\). Thus

\[\rho_B = x_B^0x_B^{-1}\rho_B(e + O(\mu^0)) = x_B^0x_B^{-1}\rho_B + O(\mu^0). \]

Since \(O(\mu^0) \to 0\), (18) can be written as

\[\frac{u_B}{\gamma} - x_B^0\phi_B^0P_A x_B^0\phi_B x_B^0\phi_B^0x_B^{-1}\rho_B \to 0, \]

(20)

\[\hat{u}_B - x_B^0\phi_B P_A x_B^0\phi_B x_B^0\phi_B x_B^{-1}\rho_B \to 0. \]

(21)

Defining \(q = \frac{x_B^0\phi_B^0}{x_B^0\phi_B}\), we see from (17) and (19) that for \(\mu\) sufficiently small, \(q_i \in [0.9, 1.1]\), and thus \(\|q - e\|_{\infty} \leq 0.1\). Now (20) can be written as

\[\frac{u_B}{\gamma} - x_B^0\phi_B qP_A x_B^0\phi_B q x_B^0\phi_B q x_B^{-1}\rho_B \to 0. \]

(22)

Defining \(h_B = qP_A x_B^0\phi_B q x_B^0\phi_B q x_B^{-1}\rho_B, \hat{h}_B = P_A x_B^0\phi_B x_B^0\phi_B x_B^{-1}\rho_B\), we see from Proposition 3.3 that

\[\|h_B - \hat{h}_B\| \leq 0.3\|\hat{h}_B\|. \]

Dividing (21) by \(x_B^0\phi_B\), and using scaled norms, it follows that

\[\|\hat{u}_B\|_{x_B^0\phi_B} - \|\hat{h}_B\| \to 0. \]

(23)

Subtracting (21) from (22) establishes that

\[\frac{u_B}{\gamma} - \hat{u}_B - h_B - \hat{h}_B \to 0, \]

(24)

or (making the iteration indices explicit),

\[\|\frac{u_B^k}{\gamma^k} - \hat{u}_B^k\|_{x_B^0\phi_B^k} \leq \|h_B^k - \hat{h}_B^k\| + \sigma_1^k, \quad \sigma_1^k \to 0 \]

\[\leq 0.3\|\hat{h}_B^k\| + \sigma_1^k \]

\[\leq 0.3\|\hat{u}_B^k\|_{x_B^0\phi_B^k} + \sigma_2^k, \]

19
where the last inequality comes from (23), with \(\sigma^k_2 \to 0 \).

Using Proposition 3.4 twice to relate \(\| \cdot \|_{x^*_B, s^*_B} \) and \(\| \cdot \|_1 \), there exists a constant \(K_1 > 0 \) such that

\[
\| \frac{u^k_B}{\gamma^k} - \hat{u}^k_B \| \leq K_1 \| \hat{u}^k_B \| + \theta^k_x.
\]

where \(\theta^k_x \to 0 \). Finally,

\[
\| \frac{u^k_B}{\gamma^k} \| \leq \| \hat{u}^k_B \| + K_1 \| \hat{u}^k_B \| + \theta^k_x.
\]

The conclusion of the proposition is now immediate, completing the proof.

Proposition 5.3 Consider the quantities \(x^{0k}, s^{0k}, x^k \), etc. generated by Algorithm 5.1, starting at \((x^0, s^0)^1\). Then

(i) The total variation in \((x, s)\) due to simplified Newton steps is bounded by \(O(\mu^{01}) \).

(ii) The sequences \(\{(x^0, s^0)^k\} \) and \(\{(x, s)^k\} \) converge to a pair \((\bar{x}, \bar{s})\) in the optimal face.

If the safeguard is activated an infinite number of times \(^*\), then \((\bar{x}, \bar{s}) = (x^*, s^*)\), the central optimal pair. Otherwise \((\bar{x}, \bar{s})\) is not necessarily equal to \((x^*, s^*)\).

Proof. The proof of (i) is a direct consequence of Propositions 5.2 and 4.3, because \(\gamma^k = O(\mu^{0k}) \).

(ii): If the safeguard is activated a finite number of times, the conclusion follows from (i), because then the sequences generated by the algorithm are Cauchy sequences. Otherwise, the convergence proof is similar to the proof for the MTY algorithm, presented in Gonzaga and Tapia [3].

We shall prove the result for the primal variables. The proof for the dual slacks is similar. Also, it is enough to prove that \(x^{0k} \to x^* \), since \(u^{0k} = O(\mu^{0k}) \to 0 \).

\(^*\)We shall prove below that this hypothesis is vacuous, but it will be needed to establish a contradiction.
Assume by contradiction that the sequence \(\{x^0_k\} \) has an accumulation point \(x \neq x^\star \). Since \(x_N = x_N^\star = 0 \), we have
\[
\sigma \equiv \|x^\star_B - x_N^\star\|_\star > 0.
\]

Let \(\mathcal{K} \subset \mathbb{N} \) be the set of iterations in which the safeguard is activated (MTY iterations). Our first step is to show that \(x \) must also be an accumulation point of \(\{x^0_k\}_{k \in \mathcal{K}} \).

Let \(\mathcal{K}_1 \subset \mathcal{K} \) be a subsequence such that \(x^0_{k_{1}} \xrightarrow{\mathcal{K}_1} x^\star \), and let \(j(k) \) be the first index in \(\mathcal{K} \) greater than or equal to \(k \). Then for any \(k \in \mathcal{K}_1 \), \(\|x^{oj(k)} - x^0_k\| = O(\mu^0_k) \) by (i), and thus \(x^{oj(k)} \xrightarrow{\mathcal{K}_1} x^\star \). Thus it is enough to consider in our assumption subsequence in \(\mathcal{K} \).

Let \(\{\epsilon^k\} \) be the sequence given by Proposition 4.2, and let \(\bar{k} \) be such that for \(k \geq \bar{k} \) the conclusions of that proposition are valid and \(\epsilon^k < 0.5\sigma \).

Choose an index \(j \geq \bar{k} \) with the following characteristics: \(j \in \mathcal{K} \), \(\|x^0_j^B - x^\star_B\|_\star < 1.1\sigma \), and the total variation of \(x \) due to simplified steps after \(j \) satisfies
\[
\sum_{k \in \mathcal{K} \atop k \geq j} \|x^{0k+1} - x^0_k\|_\star < 0.05\sigma. \tag{25}
\]

Such an index exists by definition of \(\sigma \) and by (i). We shall prove by induction that for \(k \in \mathcal{K} \), \(k > j \), \(\|x^0_k - x^\star_B\|_\star < 0.95\sigma \).

(a) \(\|x^0_{k+1} - x^\star_B\|_\star < 0.8 \times 1.1 \sigma < 0.9 \sigma \) by Proposition 4.2. Let \(k' = j(j+1) \) be the next index in \(\mathcal{K} \). Using (25),
\[
\|x^0_{k'} - x^\star_B\|_\star \leq \|x^0_{j+1} - x^\star_B\|_\star + \|x^0_{k'} - x^0_{j+1}\|_\star < 0.95\sigma.
\]

(b) Assume that for an index \(k \in \mathcal{K} \), \(k > j \), \(\|x^0_k - x^\star_B\|_\star < 0.95\sigma \). Then by Proposition 4.2, \(\|x^0_{k+1} - x^\star_B\|_\star \leq \max\{\epsilon^k, 0.8\|x^0_{k} - x^\star_B\|_\star\} < 0.9 \sigma \). As in (a), using (25), let \(k' = j(k+1) \) be the next index in \(\mathcal{K} \):
\[
\|x^0_{k'} - x^\star_B\|_\star \leq \|x^0_{k+1} - x^\star_B\|_\star + \|x^0_{k'} - x^0_{k+1}\|_\star \leq 0.95\sigma.
\]

(a) and (b) prove that for all \(k \in \mathcal{K} \), \(k > j \), \(\|x^0_k - x^\star_B\|_\star < 0.95\sigma \), contradicting the fact that \(\sigma \) is an accumulation point of the sequence \(\{\|x^0_k - x^\star_B\|_\star\}_{k \in \mathcal{K}} \), and completing the proof. \[\square\]
Having described the behaviour of the large variables, we can now compare the small variables for the exact and simplified Newton corrector steps.

At a typical iteration, the simplified step \((u, v)\) and the exact step \((\hat{u}, \hat{v})\) satisfy the equations below:

\[
\begin{align*}
x_B^0 u_B + s_B^0 u_B &= -x_B s_B + \mu e_B \\
x_N^0 v_N + s_N^0 u_N &= -x_N s_N + \mu e_N \\
x_B^0 \hat{u}_B + s_B^0 \hat{u}_B &= -x_B s_B + \mu e_B \\
x_N^0 \hat{v}_N + s_N^0 \hat{u}_N &= -x_N s_N + \mu e_N
\end{align*}
\] (26)

\[
\begin{align*}
x_B^0 &= x_B(e + O(\mu^0)) , x_N^0 = x_N(e + O(\mu^0))
\end{align*}
\] (27)

where \(\mu = \gamma \mu^0\), \(\gamma = O(\mu^0)\).

Before we state the main result, we establish some relationships within a typical iteration:

(i) (Large variables) Since \(u^0 = O(\mu^0)\), \(v^0 = O(\mu^0)\) and all components of \(x_B^0\) and \(s_N^0\) are bounded away from zero,

\[
x_B^0 = x_B(e + O(\mu^0)) , x_N^0 = x_N(e + O(\mu^0))
\] (28)

(ii) (Small variables) By construction,

\[
x^0 s^0 = \mu^0 w^0 \\
x s = \mu w,
\]

where \(w^0_i \in [0.95, 1.05]\), \(w_i \in [0.9, 1.1]\), \(i = 1, \ldots, n\). Dividing these expressions,

\[
\frac{x_N^0}{x_N} = \frac{1}{\gamma} \frac{s_N^0 w_N^0}{s_N w_N} , \quad \frac{s_B^0}{s_B} = \frac{1}{\gamma} \frac{x_B^0 w_B^0}{x_B w_B}.
\]

From (28), it is immediate that \(s_N/s_N^0 = (e + O(\mu^0))\), and \(x_B/x_B^0 = (e + O(\mu^0))\). By a simple calculation, \(w_i^0/w_i \in [0.85, 1.17], i = 1, \ldots, n\).

Defining

\[
\sigma_N = \frac{s_N^0 w_N^0}{s_N w_N} , \quad \sigma_B = \frac{x_B^0 w_B^0}{x_B w_B},
\]

it follows that for sufficiently small \(\mu^0\),

22
\[\sigma_1 \in [0.8, 1.2] \]

and we can write

\[x^0_N = \frac{1}{\gamma} \sigma_N x_N, \quad s^0_B = \frac{1}{\gamma} \sigma_B x_B. \]

(29)

Proposition 5.4 Consider an application of Algorithm 5.1. Then the safeguard cannot be activated an infinite number of times.

Proof. Assume by contradiction that the safeguard is activated at the iterations with indices in an infinite set \(\mathcal{K} \).

From Proposition 5.3, the sequences \((x^0, s^0)^k\) and \((x, s)^k\) converge to the analytic center \((x^*, s^*)\) of the optimal face. It follows that

\[\hat{u}^k \to 0, \quad \hat{v}^k \to 0. \]

(30)

Let us substitute the relations (28) and (29) into the Newton equations (26). We shall analyse the first equation (indices in \(B \)); the analysis for the other one is similar. Our approach is to compare the behaviour of the small variables in the simplified and exact corrector steps. To begin with

\[(e + O(\mu^0)) x_B v_B + \frac{1}{\gamma} \sigma_B s_B u_B = -x_B s_B + \mu e_B. \]

(31)

Subtracting (27) from (31), and restoring the iteration indices,

\[((e + O(\mu^0)) v_B^k - \hat{v}_B^k) x_B^k = -\left(\frac{1}{\gamma^k} \sigma_B u_B^k - \hat{u}_B^k\right)s_B^k. \]

Taking norms,

\[\| (e + O(\mu^0)) v_B^k - \hat{v}_B^k \| x_B^k \| \leq \| s_B^k \|_\infty \left(\| \sigma_B \|_\infty \frac{1}{\gamma^k} \| u_B^k \| + \| \hat{u}_B^k \| \right). \]

From Proposition 5.2, \(\| u_B^k \| / \gamma^k \leq K_1 \| \hat{u}_B^k \| + \theta_z^k \), where \(\theta_z^k \to 0 \). Since \(\| \sigma_B \|_\infty \leq 1.2 \) for sufficiently large \(k \), and \(\| s_B^k \|_\infty = O(\mu^0) \) by Proposition 4.1, the inequality becomes
\[\|(e + O(\mu^k))v^k_B - \delta^k_B)x^k_B\| \leq O(\mu^k)(1.2K_1(\|\hat{u}^k_B\| + \theta^k_e) + \|\hat{u}^k_B\|) \leq K\mu^k(\|\hat{u}^k_B\| + \theta^k_e), \]

where \(K \) is a constant that depends on the problem data. Since \(\hat{u}^k_B \to 0 \) by (30), and since \(x^k_B \) has all components bounded away from zero, we conclude that

\[\frac{(e + O(\mu^k))v^k_B - \hat{v}^k_B}{\mu^k} \to 0, \]

and since \(\mu^k \to 0 \),

\[\frac{v^k_B - \hat{v}^k_B}{\mu^k} \to 0, \quad \frac{u^k_N - \hat{u}^k_N}{\mu^k} \to 0. \]

(32)

The second expression is obtained by a similar process, using the second equation in (26).

Now we shall establish a contradiction. At a typical iteration, let

\[w^+ = \frac{(x + u)(s + v)}{\mu} , \quad \hat{w} = \frac{(x + \hat{u})(s + \hat{v})}{\mu} \]

From the analysis of the MTY algorithm presented in Section 4, we see that

\[\|\hat{w} - e\| \leq \frac{\alpha^2}{\sqrt{2}} < 0.01. \]

At any iteration \(k \in \mathcal{K} \),

\[\|w^+ - e\| > \frac{\alpha}{2} \geq 0.05. \]

At such an iteration, either \(\|w^+_N - e_N\| > 0.02 \) or \(\|w^+_B - e_B\| > 0.02 \). Assume that at an infinite number of iterations \(\mathcal{K}_1 \subset \mathcal{K} \), \(\|w^+_N - e_N\| > 0.02 \) (the analysis for the other case is completely similar).

Then for \(k \in \mathcal{K}_1 \),

\[\|w^+_N - e_N\| > 0.02 , \quad \|\hat{w}_N - e_N\| < 0.01 \]
This implies that in these iterations.

\[\| w^+_N - \hat{w}_N \| = \| (w^+_N - e_N) - (\hat{w}_N - e_N) \| \geq 0.01 \quad (33) \]

On the other hand, we have by definition,

\[\mu w^+_N = (x_N + u_N) (s_N + v_N) \]
\[\mu \hat{w}_N = (x_N + \hat{u}_N) (s_N + \hat{v}_N) \]

Subtracting,

\[\mu (w^+_N - \hat{w}_N) = (x_N + u_N) (s_N + v_N) - (x_N + \hat{u}_N) (s_N + \hat{v}_N). \]

Reordering terms in this expression, we obtain

\[w^+_N - \hat{w}_N = \frac{u_N - \hat{u}_N}{\mu} (s_N + v_N) + \frac{x_N + \hat{u}_N}{\mu} (v_N - \hat{v}_N). \]

Let us analyse the terms in the right-hand side (restoring the index \(k \)):

(i) By (32), \(\frac{u^k_N - \hat{u}^k_N}{\mu^k} (s^k_N + v^k_N) \rightarrow 0. \)

(ii) By Proposition 4.1, \(x^k_N = O(\mu^k) \) and \(\hat{u}^k_N = O(\mu^k). \)

From (30), \(\hat{v}^k_N \rightarrow 0. \) From Proposition 5.3, \(v^k_N \rightarrow 0. \) Hence

\[\| \frac{x^k_N + u^k_N}{\mu^k} (v^k_N - \hat{v}^k_N) \| \leq K \| v^k_N - \hat{v}^k_N \|, \]

where \(K \) depends on problem data, and so this term converges to zero.

We conclude that \((w^+_N)^k - \hat{w}^k_N \rightarrow 0, \) contradicting (33), and completing the proof.

Before we formally state the convergence properties that we have derived for the simplified predictor-corrector algorithm, there is value in collecting some fundamental observations. In what follows all quantities should be indexed by \(k \); however as we have been doing above we will not always write the index \(k \).
Proposition 5.5 Let \{\(x^0, s^0\)^k, (x, s)^k, (x^+, s^+)^k\} be generated by the simplified MTY predictor-corrector algorithm. Then

(i) \(x^T s^+ = x^T s\)

(ii) \(x^T s = \gamma x^{0T} s^0\)

(iii) \(\gamma = O(x^{0T} s^0)\)

(iv) \(x^T s \leq (1 - \\delta_n) x^{0T} s^0\) for some \(\delta > 0\) that does not depend on \(k\).

Proof. The proof of (i) follows from Proposition 2.2. The proof of (ii) follows directly from the definition of the predictor step. Both (iii) and (iv) follow from Theorem 4.1 of Ye, Güler, Tapia, and Zhang [15], once we observe that their \(\beta\) is related to our \(\alpha\) by the relationship \(\beta = \frac{\alpha}{2}\) and their steplength \(\theta\) is related to our \(\gamma\) by the relationship \(\theta = \frac{1}{1-\gamma}\).

We are now ready to formally state our convergence results.

Theorem 5.1 Let \{(x^0, s^0)^k\} and \{(x, s)^k\} denote the sequences generated by the simplified MTY predictor-corrector algorithm. Then

(i) The safeguard in the corrector step is activated only a finite number of times.

(ii) The algorithm has iteration complexity \(O(\sqrt{n}L)\).

(iii) The duality gap sequence \(\{x^{0T} s^0\}\) converges quadratically to zero.

(iv) Both sequences \{(x^0, s^0)\} and \{(x, s)\} converge to a point \((\bar{x}, \bar{s})\) in the optimal face.

Proof. Property (i) follows from Proposition 5.4. Also (ii) follows from (iv) of Proposition 5.5 in a standard manner. See Mizuno, Todd, and Ye [10] for details. Property (iii) is a combination of (ii) and (iii) of Proposition 5.5. Finally (iv) is (ii) of Proposition 5.3.
6 Concluding Remarks

The fact that so much of Theorem 5.1 follows from Proposition 5.5 and Proposition 5.5 depends so little on the corrector step leads us to take a closer look at the role of the corrector step in our convergence theory.

Consider a typical simplified MTY predictor-corrector iteration represented by \{((x^0, s^0), (x, s), (x^+, s^+))\}. The predictor step takes \((x^0, s^0)\) to \((x, s)\) and the corrector step takes \((x, s)\) to \((x^+, s^+)\). A close look at the derivation of our theory shows that for the establishment of \(O(\sqrt{n}L)\) complexity and quadratic convergence we only used the fact that the corrector step satisfies

\[
\begin{align*}
(i) & \quad x^{+T}s^+ \leq x^Ts \\
(ii) & \quad \delta(x^+, s^+) \leq \alpha/2.
\end{align*}
\]

Hence any corrector step satisfying (34) will lead to \(O(\sqrt{n}L)\) complexity and quadratic convergence, but not necessarily iteration sequence convergence. It follows that quadratic convergence is the best that should be expected from either the MTY algorithm or the simplified MTY predictor-corrector algorithm. This is because for both these algorithms the corrector step does not improve the duality gap, i.e. \(x^{+T}s^+ = x^Ts\), and therefore the quadratic decrease is obtained entirely from the damped Newton predictor step, and quadratic decrease (in general) is optimal for a (damped) Newton's method. Clearly the same is true for any corrector step that does not decrease the duality gap.

We are accustomed to expect cubic decrease from the pair consisting of a Newton step and a simplified Newton step and quartic decrease from the pair consisting of two Newton steps. In order to attain these objectives along with \(O(\sqrt{n}L)\) complexity the predictor-corrector approach will have to be modified so that the corrector step still satisfies (34) but also gives the appropriate decrease in the duality gap. For example if in the simplified corrector step of Algorithm 5.1 we replace \(\mu\) with \(\gamma\mu\) and the safeguard is activated only a finite number of times, then we would obtain cubic convergence from the simplified MTY algorithm. We did not pursue this issue in the present work.

The contribution of this paper is the demonstration that in the MTY predictor-corrector algorithm the Newton corrector step can be replaced with a safeguarded simplified Newton corrector step and all the algorithmic properties are maintained, except that the convergence of the iteration sequence
is no longer to the analytic center. Whether this loss is important or not clearly depends on the application.

Acknowledgement. We would like to thank Mike Todd for the great help he gave us by finding mistakes in an earlier draft and making numerous valuable suggestions.

References

