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Abstract
In this paper we present ezperimental results for

communication overhead on the scalable parallel ma- .

chine CM-5. We study communication latency, sus-
tainable bandwidth for simple messages as a function
of message size and multiprocessor size, impact of mul-
tiple messages on the communication cost, and effects
of contention on the communication cost. We also
study the performance of communication intensive op-
erations such as complete ezchange and broadcast us-
tng several algorithms.

1 Introduction

The performance of a distributed memory com-
puter -depends to a large extent on how fast inter-
processor communication can be performed. Despite
significant improvements in design, scalability and the
underlying technology of parallel computers, the im-
provements in communication cost have lagged far be-
hind those in the computation power of each node. It
is still two orders or more expensive to access a remote
datum than to access a local datum.

Important metrics to measure the communication
capabilities of a distributed memory parallel comput-
ers include latency (the time to start a message and
send it out on a link), sustainable bandwidth with and
without contention, effect of locality, and communica-
tion cost to perform common global operations such
as broadcast and complete exchange.

This paper presents an experimental study of the
communication capabilities of the Connection Ma-
chine 5 (CM-5) that was recently introduced by Think-
ing Machines Corporation [1]. Similar studies have
been performed for other parallel machines such as In-
tel iPSC/2 [7], Simult 2010 (8], Intel iPSC/860 (2, 3].
Section 2 presents some details of the CM-5 and out-
lines the experimental setup. Section 3 presents re-

*This work was sponsored in part by DARPA under con-
tract no. DABT63-91-C-0028 and in part by NSF grant MIP-
9110810. The content of the information does not necessarily
reflect the position or the policy of the Government and no of-
ficial endorsement should be inferred.

sults for messages from size 0 bytes (to compute la-

tency) up to 10Kbytes. Also described in Section 3
are the effect of distance on the communication cost
and the impact of multiple messages and contention on
the communication cost. Section 4 contains the per-
formance of several algorithms to perform complete
exchange for various message and machine sizes. Sec-
tion 5 presents communication overhead for perform-
ing broadcasts using two algorithms. Finally, conclu-
sions are presented in Section 6.

2 Machine Details and Experiments

2.1 The CM-5

The CM-5 machine is, a scalable multiprocessor
system, recently introduced by the Thinking Machines
Corporation [1]. It can be scaled up to 16K proces-
sors. CM-5 supports both SIMD and MIMD program-
ming models. Each node on the CM-5 is a SPARC
processor which can operate at a peak 32 MIPS and
has four optional vector processors. Thus, each node
is capable of peak 128 MFLOPS. The nodes can be or-
ganized into a single partition or multiple partitions.
Each partition has a manager which governs the allo-
cation of parallel resources.

The CM-5 has two internal networks that sup-
port interprocessor communication - 1) control net-
work and 2) data network. The control network sup-
ports operations that require global communications
such as global reduction operations, parallel prefix op-
erations and processor synchronization. The data net-
work supports point-to-point communication. Its net-
work topology is a tree-based structure as shown in
Figure 1. Both data and control networks have peak
bandwidth of 20 MBytes/Sec. The maximum band-
width is obtained when communication takes place
among nodes in the same cluster of four processors.
The data routing nodes are also SPARC processors.
A data message is broken into a collection of pack-
ets. The packet size is 20 bytes, of which 16 bytes are
for user data and the remaining 4 bytes contain con-
trol information such as destination and size. CM-5
router employs random routing scheme, and therefore,
the packets may be received in random order. The
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data network guarantees system-wide bandwidth of 5
MBytes/sec no matter where in the system the data
is being sent. Further details of CM-5 can be found in
(1.

2.2 Outline of Experiments

The following notation will be used in the rest of
the paper. A set of k messages from multiple sources
to multiple destinations is denoted as a set of tu-
ples {(s1,d1), ..., (5x,dk)}, where gs.-,d.-) denotes the
(source, destination) pair of the i** message.

The following is a brief description of the experi-

ments and the results presented in this paper.

1. In the first experiment, we study what is the max-
imum bandwidth that can be sustained for a sin-
gle message traveling the’ shortest possible dis-
tance for message sizes up to 10Kbytes. This is
done by sending a single message (called “simple

send”) {(0,1)}.

9. In the second experiment, we study the impact
of path length on the communication time of a
simple send.

3. The third experiment presents the affects of send-
ing a set of two messages, called Double Send
(DS). The motivation for this experiment is to
study if random routing and alternate paths to
the first level switching node are effectively uti-
lized.

4. The fourth experiment studies contention when
maximum number of messages are sent from one
cluster to another. Here, each processor sends

6
Figure 1: Data Network with 16 Nodes

1 8 9

a message to a distinct processor in the destina-
tion cluster. Since, currently only blocking send
is available, for an N processor system, only N/2
messages or exchanges can be performed simulta-
neously.

5. The fifth experiment studies complete exchange
(which is equivalent to all-to-all personalized
communication [10]) for various message sizes and
multiprocessor sizes using three algorithms.

6. Finally, single source broadcast is studied using
two algorithms for several message and multipro-
cessor sizes.

An average of 1000 repetitions of each experiment
were performed to compute communication cost. The
precision of the CM5 clock is 1 microsecond. For sim-
ple and multiple sends, the communication time was
computed as half of the communication time for a

round-trip message (the same technique has also been
used in [2]).

3 Message Size and Path Length

3.1 Message Size

In the first experiment, we study the communi-
cation time for a single message of varying sizes to
another node in the same cluster of processors (mes-
sage set = {(0,1)}. This represents the shortest pos-
sible distance a message would travel. Figure 2 shows
the communication times for messages of size 0-100
bytes. The communication time is computed by echo-
ing the message from the destination node to the orig-
inal sending node and then dividing the time by 2.
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Figure 2: Message Size Varying from 0 to 100 Bytes

A message of size 0 byte gives the communication
latency, which is observed to be 88 microseconds. An
interesting observation from the figure is that the com-
munication time is different for messages that are mul-
tiple of 16 bytes than those that are not a multiple of
16 bytes. Messages that are multiple of 16 bytes follow
the lower edge of the envelope, and others follow the
upper edge of the envelope in Figure 2. As stated ear-
lier, a message in CM-5 is sent as a sequence of packets.
Each packet is 20 bytes long, of which, 4 bytes are for
control purposes and 16 bytes represent user data. Ifa
message packet is full, i.e., if contains 16 bytes of user
data, the overhead of processing it is smaller than the
overhead of processing a message otherwise. Hence,
the communication overhead incurred will be smaller
if a user made the message size a multiple of 16 bytes
(by padding it, if required).

The above behavior is observed consistently for
messages of sizes between 100 and 10,000 bytes as
shown in Figures 3. The upper edge of the envelopes
in both figures represents the communication times for
messages whose sizes are not integral multiple of 16
bytes, and the lower edge of the envelopes represents
the communication times for messages whose sizes are
integral multiple of 16 bytes. The communication time
varies linearly as a function of the size of the message
along both edges. The following two equations ap-
proximately describe the communication times as a
function of message size for communication within a
cluster of 4 processors.

teomm = 0.126 x | + 88 (in psecs.) (1)
where, | is number of bytes and [ mod 16 = 0; and
tecomm = 0.45 x (I — 1) + 126 (in psecs.). 2)

where, | mod16 # 0.

3.2 Impact of Path Length
Within a cluster of 4 processors, a message will tra-
verse two links, one link up to the switching node and
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Figure 3: Message Size Varying from 0 to 10000 Bytes
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Figure 4: Impact of Path Length for Various Message
Sizes

one link down to the destination processor. We call
two link traversal as path length of one because link
traversals will always be a multiple of two (from the
source, up to the least common ancestor, and down
to the destination). Figure 4 shows communication
times for a message to traverse different distances in a
512-node CM-5. The x-axis values 1,2,3,4 and 5 cor-
respond to a message being sent by processor 0 to a
destination processor in a cluster of 4, 16, 64, 256 and
1024 processors. For the sake of clarity we have shown
graphs for four message sizes, 16, 496, 4080 and 9968;
a representative message size from each range used in
the previous experiments. The plots for size 16 and
9986 bytes represent an envelope for the communica-
tion times as a function of distance for all size messages
between those two limits.

As we can observe, for small size messages, the
communication time is not very sensitive to distance.
However, as the message size increases, the commu-
nication time increases rapidly beyond a path length
of 3. In other words, as the locality of message pass-
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ing diminishes, the communication time starts to rise
rapidly. Furthermore, as the message size increases,
the rate of increases in the communication time also
increases.

3.3 Multiple Messages and Contention

In this set of experiments we compare communi-
cation times for two distinct sources to two distinct
destinations within and outside a group of four pro-
cessors. The motivation behind these experiments is
to check if the communication node 0-3 (which is the
parent of nodes 0 through 3) .can sustain two sets of
messages with the same speed. Note that CM-5 pro-
vides two paths for communication within a cluster,
and it employs randomized routing. Therefore, it is
expected that this experiment give the same perfor-
mance as the simple send experiments in the previous
subsection.

Figure 5 compares a simple send (SS) {(0,1)} with
a set of two messages (DS) {(0,1),(2,3)}. We observe
that there is no significant difference in the perfor-
mance of SS and DS. Hence, both parent nodes of a
cluster are effectively used in this type of communica-
tion.

Similar results are obtained when simple send (SS)
is compared with double send (DS) for communication
between processors that are four hops away (message
set = { (0,4),(1,5) }, and that are six hops away (mes-
sage set = { (0,16),(1,17) }, Figure 6). Again, we
observe that there is no significant difference between
the performance of SS and DS.

3.4 Maximum Number of Messages and
Contention

In the following set of experiments, each node in

a cluster communicates with a distinct node in the

next cluster. Since each message must go through

the common parent node of a cluster to reach the

corresponding destination processor in the neighbor-
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Figure 6: Comparing a simple send with a double send
in a group of 64 processors
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Figure 7: Comparing a simple send with maximum
number of messages in a group of 8 processors

ing cluster, there is a possibility of contention. Note
that since currently only synchronous communication
(blocking send) is supported, for each message sent,
a corresponding node should have posted a receive.
Therefore, at any time, in a partition of N processors,
maximum possible number of simultaneous messages
is N/2.

In the first experiment, shown in Figure 7, each
processor in the first cluster of processor 0 through
3 simultaneously and repeatedly communicates with
nodes 4 through 7 in the neighboring cluster - the
message set is {(0,4),...,(3,7)}. Compared to a simple
send of one message, there is no appreciable difference
in the communication times for messages of sizes up to
10Kbytes. Hence, the presence of possible contention
in small clusters does not adversely affect the commu-
nication performance in small clusters.

When the cluster size is increased, the effect of
contention becomes visible. In the next experiment
each node of a cluster of size 16 (nodes 0 through



0.0025 T T T T T T T T T

0.002

max.16 —
simple(0,16) —

0.0015
Time (Secs.
0.001

0.0005

0
0 1000 2000 3000 4000 l§o000 6000 7000 8000 9000 10000
yles

Figure 8: Comparing a simple send with maximum
number of messages in a 32 processor System

15) communicates with the corresponding node of the
next cluster (nodes 16 through 31) simultaneously and
repeatedly. In this case the message set is {(0,16),
(1,17), ..., (15,31)}. Figure 8 compares the communi-
cation times for the above message set with that of a
simple send from the source cluster to the destination
cluster. The communication time in the presence of
contention is much greater than that for the simple
send. The difference in the time also increases with
an increase in the message size.

Figure 9 shows the communication cost for two ex-
periments. In the first one, all processors in a group
of 64 processors communicate with the correspond-
ing processors in another group of 64 processors (i.e.,
machine partition size is 128 processors and the com-
munication set is {(0,64), (1,65), ..., (63,127)}); and
in the second experiment, 256 processors in one group
communicate with the corresponding processors in an-
other group of 256 processors (machine partition size
512 nodes and communication set is {(0,256), (1,257),
..y (255,511)}). The contention effects can be clearly
noticed. For a partition of size 256 processors, the
contention results in degradation in performance. by
66% compared to a simple send, and for a partition of
size 512 processors, the corresponding degradation is
85%.

4 Complete Exchange

Complete exchange is a common operation encoun-
tered in computations such as matrix transpose, ADI
integration and two-dimensional FFTs (3, 9]. In the
next set of experiments, we implemented three differ-
ent algorithms for complete exchange on the CM-5;
namely, Linear Exchange (LEX), Pair-wise Exchange
(PEX) and Recursive Exchange (REX).

4.1 Linear Exchange

The LEX algorithm is shown in figure 4.1. This is
the simplest of the three algorithms. For an N proces-
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Figure 9: Comparing a simple send with maximum
number of messages in 256 and 512 processor Systems

for j= 0, nproc - 1
if (mynumber == j) then
for k= 0, nproc
if(mynumber ! = k) then
receive(k)
end if
end for
else
send(j)
end if
end for

Figure 10: Linear Exchange Algorithm

sor system, there are N steps in the algorithm. In step
1,0 < i < N, processor i receives messages from every
other processor except itself. Note that in the current
version of CM-5, only synchronous communication is
supported. If asynchronous (or non-blocking) commu-

- nication is allowed, processors need not wait for their

messages to be received in step i in order to proceed to
step ¢ + 1. In such a case, performance improvements
in the LEX algorithm may be expected.

4.2 Pairwise Exchange

The pairwise algorithm is shown in Figure 4.2.
There are N — 1 steps in an N processor system. The
communication schedule for this algorithm is as fol-
lows. At step i, 1 < i < N — 1, each processor ex-
changes a message with another processor determined
by taking an exclusive-or of its processor number with
i. Therefore, this algorithm has the property that the
entire communication pattern is decomposed into a se-
quence of pairwise exchanges. PEX algorithm is better
than the LEX algorithm in terms of utilizing the band-
width of the network and reducing the processor idle



do j=1, nproc -1
node = xor(mynumber, j)
if (mynumber < node )
receive(node)
send(node)
else
send(node)
receive(node)
end if
end for

Figure 11: Pairwise Exchange Algorithm

time. The algorithm has been used in other studies
such as in [6, 3.

4.3 Recursive Exchange Algorithm

The recursive exchange algorithm (REX) is a loga N
step algorithm for a size N multiprocessor. Each mes-
sage is of size n x N/2 for an exchange involving n
bytes per processor. The algorithm is shown in Fig-
ure 4.3. Although this algorithm takes less number
of steps than the other two algorithms, the amount of
data transmitted in each step is much higher. Further-
more, since it is a store-and-forward algorithm, each
step incurs additional overhead of reshuffling data [9].

4.4 Performance Comparison

Figure 13 compares the communication time of the
three exchange algorithms for a 32 node CM-5 par-
tition. The message size was varied between 0 and
2048 bytes. As expected, the LEX algorithm performs
much worse than the other two algorithms. Hence,
we did not consider the LEX for further analysis. For
small message sizes, the performance of PEX and REX
is virtually indistinguishable on this scale. However,
for large message sizes, PEX performs much better
than REX. This is because of the following two rea-
sons. First, even though the number of steps in REX
is only logz N, as compared to N steps in PEX, the
message size in REX remains constant at n x N/2,
whereas the size of each message in PEX is n. Second,
each node needs to buffer and reshuffle data in REX
so that appropriate data can be sent to the appropri-
ate node. These two overheads outweigh the savings
in the number of communication steps .

In the next experiment, we selected a few message
sizes in different ranges, and collected the communi-
cation times for several machine sizes. Figures 14 and
15 depict the communication times for CM-5 of size
up to 256 processors for algorithms REX and PEX.
Figure 14 shows times for messages of size 0 bytes and
256 bytes, and Figure 15 shows times for messages of
size 512 and 1920 bytes.

bytes = Size/2
fori=1,log N
k = N/pow(2, j)
if (mod(mynumber, k) < k/2)
node = mynumber + k/2
else
node = mynumber - k/2
if (mynumber < node )
pack_message_to_send
send (node)
receive(node)
unpack_received_message
else
receive(node)
unpack_received_message
pack_message_to_send
send(node)
endif
end for

Figure 12: Recursive Exchange Algorithm

Figure 13: Complete Exchange Algorithms on 32
nodes
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rithm as a function of multiprocessor size for various
message sizes. For small messages, the broadcast time
does not increase rapidly as the multiprocessor size
increases. However, as the message size increases, the
broadcast time increases more rapidly. In fact, beyond
a certain size, it is better to break up a message into
two (or more) smaller messages before broadcasting.

6 Conclusions

This paper presented experimental results for com-
munication overhead on the CM-5. It is observed that
the communication latency of the data network is 88
microseconds. We also observed that the communica-
tion cost for messages that are multiple of 16 bytes is
much smaller than messages that are not, and there-
fore, for better performance, a user should pad mes-
sages to make them a multiple of 16 bytes. For small
number of messages, high bandwidth can be sustained
in large multiprocessors. However, as the message size
increases and the number of messages increases, the
contention can degrade the performance by as much
as 90%. Hence, for large messages, locality is very
important.

We also studied the communication overhead of
three complete exchange algorithms. For small mes-
sage sizes, the Recursive Exchange algorithm performs
the best, especially for large multiprocessors. How-
ever, for large message sizes, the Pairwise exchange
algorithm is preferable.

Finally, we studied two algorithms for one-to-all
broadcast; namely, the Linear broadcast algorithm
and Recursive broadcast algorithm. Linear broadcast
does not perform well at all. The recursive broadcast
algorithm performs well. The most interesting and
important conclusion is that for large message sizes,
it is better to split a broadcast message into two or
more smaller messages depending on multiprocessor
and message size.
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Obviously, for messages of size 0 byte, REX per-
forms better than PEX for all multiprocessor sizes be-
cause there is no data shuffling involved. For messages
of size 256 bytes, PEX performs better than REX
for small multiprocessor sizes because the overhead of
message size and number of steps dominate for REX.
As the partition size increases, overhead of the larger
number of messages dominates the overhead of larger
messages and reshuffling in REX, and therefore, REX
performs better. Figure 15 shows the communication
overheads when message size is increased further. The
crossover is again seen for message size 512, but the
crossover point has moved to the right as compared
to that for message size 256 (Figure 14). This is be-
cause, beyond a certain size, the overhead of shuffling
and larger message size is significantly larger than the
savings provided by a much smaller number of com-
munication steps.

forj =1, logN
distance = N/pow(2, j);
if (mod(mynumber, distance) == 0) then
if (mod(mynumber/distance, 2) == 0) then
send(node);
else
receive(node);
end if
end if
end for

Figure 16: Recursive Broadcast Algorithm
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5 DBroadcast

Broadcast is a very common communication prim-
itive encountered in many applications. We con-
sider one-to-all broadcast (also known as single source
broadcast) [10]. This section presents performance of
two broadcast algorithms; namely, Linear Broadcast
(LIB) and Recursive Broadcast (REB).

The LIB is the simplest algorithm. It has N —1
steps. The processor broadcasting a message simply
sends the message one by one to all the processors.
In the REB, there are loga N steps. Without loss of
generality, consider processor 0 to be the broadcasting
source. In the first step, it sends the message to pro-
cessor N/2, in the second step processor 0 sends the
message to processor N/4 and processor N/2 sends
the message to processor 3N/2, and so on. Figure 5
presents the algorithm.

Figure 17 presents the performance of the two algo-
rithms as a function of message size for a 32 node ma-
chine partition. Clearly, the LIB algorithm performs
much worse than the REB algorithm. Therefore, we
did not consider the LIB algorithm any further.

Figure 18 presents performance of the REB algo-
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