Automatic Differentiation
Bibliography

George F. Corliss

CRPC-TR92244
July 1992

Center for Research on Parallel Computation
Rice University
P.O. Box 1892
Houston, TX 77251-1892
Automatic Differentiation Bibliography

compiled by

George F. Corliss

July 1992
Automatic Differentiation Bibliography

compiled by

George F. Corliss*

Mathematics and Computer Science Division

Technical Memorandum No. 167

July 1992

*Present address: Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI 53223

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38 and through NSF Cooperative Agreement No. CCR-8809615.
Automatic Differentiation Bibliography
compiled by George F. Corliss

This bibliography was originally published in *Automatic Differentiation of Algorithms: Theory, Implementation, and Application* [Grie91e] as the common bibliography for all of the papers in that volume. Each author prepared a bibliography for her or his own paper. The separate bibliographies were merged into a single BibTex database, and references from several other sources were added. Especially valuable contributions were made by bibliographic data bases previously compiled by Bruce Char, by David Gay, and by Davis, Corliss, and Krenz [Davi88a]. Additional works are added as they come to my attention.

This bibliography includes most of the work known to the editors in the area of automatic differentiation. Because it includes all of the works cited by any paper in [Grie91e], it includes many citations that are not directly related to automatic differentiation. For example, it includes basic references in optimization, symbolic algebra systems, and several applications areas.

The file `all.brec.bib` is a standard BibTex data base. It assumes commands to get Russian digraphs:

\newcommand{\Yu}{(Yu)}
\newcommand{\Ye}{(Ye)}
\newcommand{\Ju}{(Ju)}

This report is produced by the file `all_cite.tex`.

The electronic version of this bibliography is available from netlib (netlib@research.att.com) and by anonymous ftp from boris.mscs.mu.edu (134.48.4.4) in directory pub/corliss/Autodiff. Corrections and additions are welcome and should be sent to

Dr. George F. Corliss
Department of Mathematics, Statistics,
and Computer Science
Marquette University
Milwaukee, WI 53233 USA
georgec@boris.mscs.mu.edu

References

[Bigg73a] ——, *A note on minimization algorithms which make use of non-quadratic properties of the objective function*, J. the Institute of Mathematics and Its Applications,

[Cour90a] ———, *Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations*, Tellus, 42A (1990), pp. 531–549.

Also appeared as Technical Report ACM–89–1, Royal Military College of Science at Shrvenheim, Shrvenheim, U.K.

[Dixo87d] ——, The use of the extended operations set of Ada with automatic differentiation
Optimisation Center, Hatfield Polytechnic, Hatfield, U.K., April 1987.

[Dixo86b] ———, The truncated Newton method for sparse unconstrained optimisation using
Center, Hatfield Polytechnic, Hatfield, U.K., October 1986.

[Dixo88a] L. C. W. Dixon and R. C. Price, Numerical experience with the truncated

[Dole90a] Y. Doleb and P. S. Wang, SUI: A system independent user interface for an
integrated scientific computing environment, in Proceedings ISSAC '90, S. Watanabe

[Doua90a] D. Douady and O. Talagrand, The impact of threshold processes on variational
assimilation, in Proceedings of the International Symposium on Assimilation of
Observations in Meteorology and Oceanography, World Meteorological Organization,

[Drey90a] S. E. Dreyfus, An appraisal of some shortest path algorithms, Operations Re-

of the Hellerman-Ranck p^4 algorithm and the p^5 algorithm of Erisman et al., Report

[Duff74a] R. Duffin, On Fourier's analysis of linear inequality systems, Mathematical

[Eise88a] H. Eisenpress and A. Bomberault, Efficient symbolic differentiation using
PL/I-Formac, Technical Report 320–2956, IBM New York Scientific Research Center,
Yorktown Heights, N.Y., September 1968.

[Engq80a] B. Engquist and T. Smedsaas, Automatic computer code generation for hyper-
pp. 249–259.

[Enri87a] W. H. Enright and J. D. Pryce, Two FORTRAN packages for assessing

[Esco76a] P. R. Escobar, Methods of Orbit Determination, Robert E. Krieger Publishing,

[Evtu85a] Yu. G. Evtushenko, Numerical Optimization Techniques, Optimization Soft-

[Evtu89a] ———, Automatic differentiation viewed from optimal control, in Automatic Dif-
ferentiation of Algorithms: Theory, Implementation, and Application, A. Griewank

[Evtu89b] Yu. G. Evtushenko and V. P. Mazourik, Optimization Software, Znanie,

[Flaj90a] P. Flajolet, P. Sipala, and J.-M. Steyaert, *Analytic variations on the
common subexpression problem, Rapports de Recherche 1210, INRIA-Rocquencourt, 78153 Le Chesnay Cedex, France, 1990.

[Garc91a] ——, A system for the differentiation of Fortran code and an application to

[Irim87a] M. Iri and K. Kubota, Methods of fast automatic differentiation and applications, Research Memorandum RMI 87-02, Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 1987.

Hochschule, Zürich, Switzerland, 1976.

[Kalt88a] E. KALTOFEN, *Greatest common divisors of polynomials given by straight-line

[Kubo90a] ——, *PADRE2, version 1 — User’s manual*, Research Memorandum RMI 90–01, Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 1990.

OAK RIDGE, TENN., 1983.
[ONEi71a] R. O'NEILL, Algorithm AS 47 - Function minimization using a simplex procedure,
von Ableitungen, Wissenschaftliche Zeitschrift der Technischen Hochschule für
differentiation, Technical Report NOC TR224, The Numerical Optimisation Center,
Hatfield Polytechnic, Hatfield, U.K., December 1990.
[Parl80a] P. PARLETT, The Symmetric Eigenvalue Problem, Series in Computational Math-
[Pask67a] YE. N. PASKHIN, Analytic function differentiation by computer, Computer Meth-
[Pave85a] R. PAVELLE AND P. S. WANG, MACSYMA from F to G, J. Symbolic Computa-
[Peac55a] D. W. PEACEMAN AND H. H. RACHFORD, JR., The numerical solution of
[Pene76a] V. V. PENENKO AND N. N. OBRAZTOV, A variational initialization method for
the fields of the meteorological elements, Meteorol. Gidrol. (Soviet Meteorol. Hydrol.),
[Pfei80a] F. W. PFEIFFER, Some advances related to nonlinear programming, SIGMAP
pp. 1-8.
[Plas90a] P. E. PLASSMANN, Sparse Jacobian estimation and factorization on a multipro-
cessor, in Large-Scale Optimization, T. F. Coleman and Y. Li, eds., SIAM, Philadelphia,
[Pohl89a] I. POHL, C++ for Programmers, Benjamin/Cummings, Redwood City, Calif.,
1989.
[Pres86a] W. H. PRESS, B. P. FLANNERY, S. A. TEUKOSKY, AND W. T. VETTERLING,
Numerical Recipes: The Art of Scientific Computing, Cambridge University Press,
[Pric87a] R. C. PRICE, Sparse Matrix Optimisation using Automatic Differentiation, PhD
[Pryc87a] J. D. PRYCE AND P. H. DAVIS, A new implementation of automatic differenti-
ation for use with numerical software, Technical Report TR AM-87-11, Mathematics
Department, Bristol University, 1987.
[Pryc91a] J. D. PRYCE AND B. R. STEPHENS, The DAPRE preprocessor users' guide,
Technical Report ACM-91-3, Royal Military College of Science at Shrivenham,
[Rad91a] RADIATION SHIELDING, GRESS 1.0, Gradient Enhanced Software System, dis-

[Tham91a] ——, Synthetic calculus: A paradigm for mathematical program synthesis, in

[Wolf90a] ——. Mathematica: A System for Doing Mathematics by Computer, Addison-

