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1 Introduction.

A standard bilinear program in the variables z and y is an NP-hard problem that
involves the minimization of a nonconvex quadratic objective that is void of pure
quadratic terms in either z or y, over a feasible domain defined by two polyhedral
sets — one in z and the other in y. The fact that these problems are NP-hard
follows from their equivalence with concave quadratic programs [Kon76b] and
from the NP-hard property of these QP problems [Sah74].

The many applications of bilinear programming that have been reported in
the literature [Kon71, Vai74] are evidence of the importance of these problems.
It is therefore no surprise that several techniques have been developed for solv-
ing them. Various cutting plane algorithms [Kon76a, SS80, VS77] are the most
common of these techniques. Less common approaches include the polynomial
annexation strategy proposed by Vaish and Shetty [VS76] and an approach that
hinges on an equivalence between bilinear programs and linear bilevel program-
ming problems. Gallo and Ulkiicii [GU77] exploited this equivalence, without
apparent knowledge of bilevel programming, to develop a solution technique
based on branch and bound methods. Recently, a technique that applies se-
quential LCP methods [JF91] has been proposed for solving bilinear programs,
and a variant of the parametric simplex algorithm [YK91] has been proposed
for solving rank two and rank three bilinear programs.
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To date, all the bilinear programming test problems that have been reported
in the literature have been generated randomly, or are special instances of con-
cave quadratic programming test problems (see [Kon76a] for example). We
know of no technique specifically designed to construct standard bilinear pro-
gramming test problems with know solutions and properties. The purpose of
this paper is to propose such a technique.

In section 2 we give a mathematical formulation of the standard bilinear pro-
gramming problem and outline our approach for constructing these problems. In
section 3 we describe two special bilinear programs that are used in constructing
the separable bilinear program presented in section 4. The equivalence between
this separable bilinear program, with known solutions and properties, and the
random bilinear programs that result from a simple nonsingular transformation
of variables, is also established in section 4. Section 5 presents our concluding
remarks.

2 Problem Definition and Motivation.

The standard bilinear programming problem, problem BP, can be defined as
follows:
minimize f(z,y) = Tz +zTQy+dTy

subject to
Az <a, By<b

where ¢,z € R",d,y€e R, Q e R"™*™, A€ R®*", B € RP*™ a € R® and
beRP.
Problem BP exhibits the following two properties:

Property 2.1 If problem BP has a finite optimal solution then there ezists
an ertreme point 7 of the polyhedron X = {z € R" : Az < a} and an extreme
point §j of the polyhedron Y = {y € R™ : By < b} such that (Z, ) is an optimal
solution of problem BP.

Proof. See [Kon76a]. O

Property 2.2 If (,) is a local minimum of problem BP then Z is an optimal
solution of the linear program:

. T _
min z* (¢ + Q)
and § is an optimal solution of the linear program:
. T T -
m d .
min y*(4+Q z)
In other words, & = argminzex f(z,¥) and § = arg minyey f(z,v)-

Proof. If (Z,§) is a local minimum of problem BP then it is a stationary
point of the indefinite quadratic program:

EARIREIRIERHE

]) >0, Y(z,y) e X xY. (1)

—
Q< 8
11
< 8
[ I )
3
Ve
—
[SU Y
ed
+
—
Q
‘_]O
o0
—
-
< 8w



Setting y = § in (1) yields:

_ 17T _
AR

Therefore, Vz € X, zT(c + QF) > T(c + QF) and this establishes the first
assertion.

The second assertion is proved in a similar manner by setting £ = Z in (1).
o

It is our intention to construct standard bilinear programming problems by
performing a random nonsingular transformation of variables to a separable ver-
sion of problem BP. This separable version of problem BP, which is described
in section 4, is constructed by combining disjoint low-dimensional bilinear pro-
grams. These kernel programs, which are described in the following section, are
constructed in such a way that their solutions are known as a consequence of
properties 2.1 and 2.2.

3 Kernel Bilinear Programs.

In this section we describe two sets of kernel bilinear programs. These two sets
will be combined to generate a separable bilinear programs which, in turn, will
be used to construct standard bilinear programming test problems.

Kernel Program 1

For k = 1,...,k; define problem BP; to be the following four-variable two-
parameter bilinear program:

minimize fi(ce, v) = ek Tz + 6T Quye + di” vk

subject to
Arze < @k, Bryr < be

where zi, yt € R?,

-1 10
ck=dk=[_1] anko=[0 1])

0 1 2 —bk 1 0
Ar=]| -2 =1 |,axr=| -2 |,Be=| 6 —pr 1 and by = | 26; — px

2 -1 2 pe =2 0

The following special classes of problem BP, k € {1,...,%;}, will be used
in constructing a separable version of problem BP:

e Class 1: 1 <6 <3 and px = 0.
e Class 2: 6y =3 and pr = 0.
e Class 3: 6 > 3 and pr = 0.
e Class 4: §; = 5/2 and pr = 3/2.



For each of these problem classes the sets Xi = {:c €R?: Az < ak} and
Y. = {y €R?: By < br} define polytopes. Consequently, by virtue of prop-
erty 2.1, these problems will have a global minimum (z,y) with T an extreme
point of X; and § an extreme point of Yi. In addition, each of these prob-
lem classes exhibits different solution properties as a result of their distinct
constraint geometries. These properties are presented below.

Property 3.1 For class 1 problems (see figures 1(a) and 1(b)), problem BP;
(1 M

has ezactly four local minima; namely, the three eztreme points (zxw’) =

(0,2,2,0), (zg"),yg)) =(2,2,0,0) and (zis),yia)) =(1,0,1,6;), and the nonez-
treme point (1:5‘4), yg)) = (1,2,1,0). The first two points are global minima with
f"é”i”,yi”) = —4, 1= 1,2, whereas fi(z{, 11) = —(6x-+1) and fi(={", 4;”) =

Proof. For I = 1,2,3 and 4, zg) = argmingex, fe(, yg)) and yg) =
arg minyey, fk(a:i‘),y). In other words (zil),yg)), 1=1,2,3,4, satisfy the nec-
essary conditions of property 2.2. The local optimality of these points is estab-
lished by noting that all feasible directions from these points are either strict
ascent directions or stationary directions of nonnegative curvature. Finally, the
exclusivity of these four points follows since no other points satisfy property 2.2.
(]

Similar arguments to those given above can be used to establish the following
properties pertaining to the remaining three classes.

Property 3.2 For class 2 and 3 problems the points (zﬁl),yg)) = (0,2,2,0),
(zﬁz),yﬁz)) =(2,2,0,0), (zis), yis)) =(1,0,1,6;) and (zﬁ”, ygf)) =(1,2,1,0) are
the only local minima of problem BPy. For class 2 problems, the first three of
these points are global minima with function value fk(zg),yg)) =-4,1=1,2,3,
whereas, for class 3 problems, the point (zﬁa),yga)) = (1,0,1,6;) is the unique

global minimum with fk(zﬁs), yis)) = —(6 +1).

Property 3.3 For class § problems (see figures 1(a) and 1(c)) the point (zﬁz), yff’) =

(2,2,0,0) is the unique global minimum of problem BP; with function value
fk(zﬁz),yﬁz)) = —4. The point (z&s),ygs)) = (1,0,1,6k) is the only (other) local
minima with fk(zf’), yﬁa)) =—(6 +1).

Kernel Program 2
For k = k1 + 1,..., ko define problem BP; to be the following three-variable
bilinear program:

minimize fk(zk, yk) = cszk + szQkyk <+ dkyk

subject to
Agzi < ar, Bryr < bk

where z; € R?, 1« € R,

ck:[:i],dk=—2anko=[}],
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Figure 1: X, Yi and contours of fi for class 1 (figures (a) and (b)) and class 4
(figures (a) and (c)) problems.
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For these programs the set X; = {z € R? : Ayz < ai} defines a polytope
but the set Yz = {y € R? : Byy < by} now defines a polyhedron. However prop-
erty 2.1 still applies (ie. problem BP has a finite solution). In fact, using ar-
guments similar to those given for kernel program 1, we are able to make the
following observation about the solution to these problems:

Property 3.4 For k = k1 + 1,...,Ky problem BP; has the unique minimum
(=, 4{*) = (1,0,2), with function value fi(z®), ) = 3, and no other local
minima.

In the next section we describe the bilinear test problems that result when
these kernel programs are combined and then randomly transformed.

4 Constructing Random Bilinear Programs.

The observations from the last section guarantee the following:

Proposition 4.1 If (Z, §k) is ¢ minimum of problem BPy, for k =1,..., k2,
then (21 -+ ZTx,§1 - Ux,) 18 @ minimum of the following separable bilinear pro-
gram:

minimize f(z,y) = Z fe(ze, y)
k=1

subject to
zr € Xk, €Y; k=1,..., k.

This separable bilinear program can be rewritten, as problem BP(c,d,Q, 4, a, B, b):
minimize f(z,y) = Tz +z7 Qy + dTy

subject to
Az <a, By<b

where z € R?*?, y € R"1t"2
T =[c]--cL),d" = [d] ---di,] and Q = diag(Q1 - Qus),
A =diag(A; -+ Ax,),aT = [oT ---aT ], B = diag(Bi - - - Bx,) and b7 = [6] - -5 .

Based on proposition 4.1 the following can be said about the minima of
problem BP(c,d,Q, A, a, B,b):

Corollary 4.1 Problem BP(c,d,Q,A,a, B,b) has 4F11+RK1a+kis . 2R14 Jocal
minima including 2511 - 3513 global minima, where x4, i = 1,2,3,4, is the
cardinality of the set {k < k; : problem BP; is in Class i}.

For n; = 2k; and ny = k; + K2 define the order-n; matrix M; = D;H; and
the order-n, matrix M, = DyH,, where H, and H, are random Householder
matrices and D, and Dy are positive definite diagonal matrices. In addition, let
W, = M7! = H.D;! and Wy, = M, ! = H,D;'. With these definitions we can
construct the random bilinear problem B_P(E, J,Q,/i, a, B, b), where ¢ = M;rc,
d=MTd, Q=MIQM,, A= AM; and B = BM,.

The relationship between separable problem BP(c,d,Q, A, q, B, b) and this
transformed problem is characterized by the following result:



Proposition 4.2 Problem BP(c,d,Q, A, a, B,b) in variables z € R"* and y €
R™ is equivalent to problem BP(¢,d,Q, A a, B,b) in the variables £ € R and
7 € R™ under the nonsingular transformations T = Wyz and yj = Wyy.

Proof. For £ = M.z and y = My§j problem BP(c,d,Q, A, a, B,b) becomes
minimize f(MzZ, My§) = ¢? Mo + 2T (MTQM,)§ + dT My 3

subject to
[AM:]z < a, [BMy]§<

which is problem BP(E,d,Q, A, a, B,b) in the variables Z € R"* and j € R"".
()

Corollary 4.2 If (z,y) is a local minimum of problem BP(c,d,Q,A,a,B,b)
then (Wyz, Wyy) is a local minimum of problem BP(c,d Q,A,a, B,b), where
¢=MTc,d=MTd, Q = MTQM,, A = AM; and B = BM,. Similarly, if
(%,9) is a local minimum of problem BP(C, d,Q,A,a,B,b) then (M. %, Myg) is
a local minimum of problem BP(c,d,Q, A, a, B,b).

As a consequence of proposition 4.2 and corollary 4.2 it is apparent that
kernel programs 1 and 2 can be used to construct a separable bilinear program
(with known minima) which can be transformed to generate (equivalent) ran-
dom bilinear programming test problems. In addition, the sparsity of the data
that defines problem BP(,d,Q, A, a, B,b) can be adjusted by controlling the
sparsity of the Householder vectors that. generate H, and Hy, and the spectrum
of MTQM, (or the geometry of problem BP(E, d,Q, A, a, B,b)) can be adjusted
by controlling the entries of D; and D, .

5 Concluding Remarks.

Several applications of bilinear programs, and various solution techniques for
these problems, have been reported in the literature. To test and improve these
individual solution techniques, and to make valid comparisons between different
techniques, requires a suite of test problems. This paper describes a simple but
effective technique for constructing such problems. The properties and solutions
of the constructed problems can be controlled by the user.
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