Relaxing SIMD Control Flow Constraints
using Loop Transformations

Reinhard v. Hanxleden
Ken Kennedy

CRPC-TR92207
April, 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Relaxing SIMD Control Flow Constraints using Loop Transformations®

Reinhard v. Hanxleden

f

Ken Kennedy

Department of Computer Science
Rice University
Houston, TX 77251-1892

Abstract

Many loop nests in scientific codes contain a paralleliz-

able outer loop but have an inner loop for which the .

number of iterations varies between different iterations
of the outer loop. When running this kind of loop nest
on a SIMD machine, the SIMD-inherent restriction to
single program counter common to all processors will
cause a performance degradation relative to compara-
ble MIMD implementations. This problem is not due
to limited parallelism or bad load balance, it is merely
a problem of control flow.

This paper presents a loop transformation, which we
call loop flattening, that overcomes this limitation by
letting each processor advance to the next loop itera-
tion containing useful computation, if there is such an
iteration for the given processor. We study a concrete
example derived from a molecular dynamics code and
compare performance results for flattened and unflat-
tened versions of this kernel on two SIMD machines,
the CM-2 and the DECmpp 12000. We then evaluate
loop flattening from the compiler’s perspective in terms
of applicability, cost, profitability, and safety. We con-
clude with arguing that loop flattening, whether per-
formed by the programmer or by the compiler, intro-
duces negligible overhead and can significantly improve
the performance of scientific codes for solving irregular
problems.

*This research was supported by the Center for Research on
Parallel Computation, a National Science Foundation Science
and Technology Center. Use of the DECmpp 12000 was provided
by the Center for Research on Parallel Computation under NSF
Cooperative Agreement No. CCR-8809615 with support from
Digital Equipment Corporation.

tTo appear in the Proceedings of the ACM SIGPLAN ’92
Conference on Program Language Design and Implementation,
San Francisco, CA, 1992.

1 Introduction

In the process of parallelizing scientific programs, it
is common to find loop nests in which the outer loop

* can Tun in parallel but the amount of computation in
‘the inner loop varies for different iterations of the outer

loop. This causes a load balancing problem because the
outer loop iterations have to be partitioned among the
processors in such a manner that each processor has a
roughly equal amount of work to do. Load balancing is
a difficult problem in itself which has been frequently
addressed in the literature [1, 9, 11). Once this prob-
lem is solved, we can usually expect good performance
when running such a loop nest on a shared-memory
or distributed-memory MIMD (Multiple Instruction,
Multiple Data) machine.

However, this kind of loop nest causes special prob-
lems for SIMD (Single Instruction, Multiple Data) ar-
chitectures because of the restricted control flow on
these machines [4]. If the number of iterations of
the inner loops varies from one outer loop iteration to
the next, then the restriction to a common program
counter makes a naive SIMD implementation ineffi-
cient. As observed in a case study implementing an
image processing algorithm on the Massively Parallel
Processor [23, page 143]: “... the complexity of each
iteration in the SIMD environment is dominated by the
largest region in the image. This is due to the fact that
the synchronous execution of instructions forces each
processor to either perform the operation or wait in an
idle state until all processors have completed the oper-
ation.” To overcome this limitation, we propose a new
technique, which we call loop flattening, that, roughly
speaking, amounts to lifting the innermost loop body
up into the outer, parallel loop by merging the control
of the inner loops with the control of the outer loop.

This paper is organized as follows. Section 2 de-
scribes the different variants of pseudo Fortran which
we will use throughout this document. Section 3
presents a small example to illustrate the kind of prob-
lem we are interested in and gives a first glance at loop

flattening, which Section 4 elaborates at at a more gen-
eral level. Section 5 examines the applicability of loop
flattening for a nonbonded force kernel, taken from a
typical molecular dynamics program, which we imple-
mented on both the CM2 and the DECmpp. Section 6
evaluates loop flattening from the compiler perspec-
tive. We conclude with a discussion of related work in
Section 7.

2 Languages

The concepts introduced here apply to a broad range of
languages. We will give program examples in different
variants of pseudo Fortran:

F77 - Strictly sequential Fortran 77 (possibly a “dusty
deck” program).

F77D - F77 enhanced with distribution statements as
proposed in Fortran D [8] and High Performance
Fortran [12]. An important goal of F77D is to pro-
vide a basis for efficient compilation towards both
MIMD and SIMD distributed memory machines,
so it should not contain any constructs which are
specific to either architecture.

F77pmimp - A Fortran 77 version to run on a MIMD
machine, which assumes a separate name space for
each processor.

F90s/0p - A Fortran 90 version to run on a SIMD ma-
chine, similar to Connection Machine Fortran [21]
or MasPar Fortran [16]. There are two important
differences to the F77 variants:

o By default, scalars of the F77 version will be
replicated in the F90simp version; i.e., they
will be declared as vectors of size P, where
processor p owns the p-th element.

o In keeping with Fortran 90 convention, omit-
ted array indices refer to all elements of an
array dimension, and an unsubscripted array
reference refers to all array elements.

For enhancing readability of the F90s;pp examples,
we extend the language constructs which are typically
implemented by vendors in several ways:

e The FORALL construct cannot only be applied to
single statements, but also to blocks. The general
form of this extension can be interpreted differ-
ently depending on the semantics chosen for the
case where different iterations modify the same set
of data; our examples, however, will avoid these
access interferences.

e DO-ENDDO’s, DO-WHILE’s, IF’s, WHERE’s,
and FORALL’s can be nested freely within each
other.

c P1 — sequential version
DO i=1K
DO j =1, L(i)
X(@j)=1i+j
ENDDO
ENDDO

Figure 1: Original loop nest EXAMPLE.

C P2 — Fortran D version
DECOMPOSITION XD(K,Lmax), LD(K)
ALIGN X with XD, L with LD
DISTRIBUTE XD(BLOCK,*), LD(BLOCK)

DO i=1K
DO j=1,L()
X(@i,j) =1i#*j
ENDDO
ENDDO

Figure 2: EXAMPLE in F77D.

o WHILE loops can be controlled by an array of
booleans (instead of just a scalar boolean), if the
different array elements are guaranteed to have
identical values.

3 Example of Loop Flattening

Consider the contrived F77 loop nest in Figure 1,
henceforth called EXAMPLE. This clearly is a depen-
dence free, parallelizable loop, where the number of
inner loop iterations depends on the current iteration
of the outer loop. Let K be 8 and let L(1:8)! have the
values 4,1,2,1,1,3,1,3, respectively. Assuming P = 2
processors and the owner computes rule, where in all
assignment statements the right hand side expression

~is computed by the processor which “owns” the left
.hand side variable, we can in this case just distribute

L and the rows of X blockwise to achieve perfect load
balance. This is illustrated in the F77D program in
Figure 2, which assigns L(1:4), X(1:4,1:4) to the first
processor and L(5:8), X(5:8,1:4) to the second proces-
sor. The owner computes rule results in partitioning
the iteration space among the two processors, so each
processor executes only some iterations of the outer
loop.

For a MIMD machine, the Fortran D compiler would
derive the F77apmp program shown in Figure 3. Each
processor executes the loop nest independently, need-
ing a total of

4
TIMEyup = max ; Li+2(p-1)=8 (1)

1Fortran 90 notation for the array elements L(1)...L(8).

C P3 — MIMD version

DO i=1,4
DO j=1,L)
XG,))=i#*)
ENDDO
ENDDO

Figure 3: EXAMPLE in F77pmp. X and L are renamed
to X’ and L’ to reflect that there is no common name
space any more. On processor p, p = 1,2, L'(3) corre-
sponds to L(i + 4(p — 1)), and X'(i, j) corresponds to
X('I + 4(P - 1)).7)

Time|1 2 3 4 5 6 7 8
1 1 111 2 3 3 4
2 1 2 3 411 21
ig 1 2 2 2 3 4 4 4
J2 112 3 11 23

Figure 4: MIMD execution trace for EXAMPLE loop; ip
and j, denote i and j on processor p.

inner loop iterations. This is illustrated in the trace in
Figure 4.

A F90s:mp version could be derived from the F77D
program by just changing the outer DO loop to a
FORALL loop. This would result in a partitioning of
the iteration space, similar to the F77D version. For
expository reasons, we will give a slightly different but
equivalent F90sspp version which takes the data de-
composition and the number of processors already into
account and thus directly reflects the control flow for
K =8 and P = 2. As in the F77pqmp version, we
change the upper bound of the outer loop from K =8
to K/P = 4 and let each processor execute all itera-
tions of the loop. We continue to use the loop index i in
control flow related statements; to allow the different
processors to operate on different data, we introduce
an auxiliary induction variable, i, which replaces i in
non-control flow statements. The result is shown in
Figure 5.

Note how we had to transform the inner DO loop

C P4 — naive SIMD version
DO i=1,4
P =i+ [0,4]
DO j =1, max(L(i))
WHERE (j < L(i")) X(@’j) =1 *j
ENDDO
ENDDO

Figure 5: EXAMPLE in F90s/mp. [0,4] denotes the two-
element vector containing 0 and 4.

C PS5 — flattened SIMD version

i=[1,5)
K = [4,8]
j =1

WHILE ANY(< K)
WHERE (i € K)
X({i,j)=1i#]j
WHERE (j = L(i))
i=i4+1
i=1
ELSEWHERE
i=i+1l
ENDWHERE
ENDWHERE
ENDWHILE

Figure 7: EXAMPLE in flattened F90s/mp-

due to the single SIMD control flow. To make sure that
each processor can perform all of its iterations, the up-
per bound L(#) had to be changed into the maximum
of L(#') over all processors. This in turn necessitated a
guard for the loop body which tests whether this pro-
cessor is still involved in the current inner loop iteration
or whether it is masked out and sits idle, possibly to
participate again in later iterations.

We will refer to this transformation, which can be
applied to other loop types as well, as SIMDizing a
loop. It is a straightforward consequence of the SIMD
restricted control flow, yet it is the crucial motivation
for the concepts introduced in this paper. The outer
loop does not have to be SIMDized in this particular
case because we know that each processor works on
exactly four rows of X and therefore has to execute the
outer loop the same number of times. Loop SIMDizing
has the effect that our F90spsp program has to execute

4
TIMEsimp = E;g?’g LE+4(p-1)=12 (2)

=1

iterations. Roughly speaking, our time bound has in-
creased from a maximum over sums to a sum over max-
ima. This becomes apparent when considering the ex-
ecution trace shown in Figure 6.

Since the equivalent MIMD implementation per-
forms significantly better, this bad running time can
not be explained with lack of parallelism or bad load
balance. To overcome this purely control flow related
problem, we apply loop flattening, which will be in-
troduced at a more general level in the next section.
The result is shown in Figure 7. This version achieves
the same time bound as in the MIMD implementation,
needing only eight steps as shown in the trace in Fig-
ure 4.

The reader might have noticed that the loop body
shown in Figure 7 is now always executed at least once
for each outer loop iteration, which is equivalent to

Time |1 2 3 4|5 6 7|8 9|10 11 12
h |1 1 1 1]2 3 3| 4
A |1 2 3 41 1 2|1
ia | 1 2 2 23 4 4 4
ja |1 1 2 3|1 1 2 3

Figure 6: Execution trace for unflattened example loop; iy, j, denote the actual iteration counts of processor p, no

entry means “idle.”

init1 i=1
WHILE test, WHILE (i < K)
init, i=1
WHILE test, WHILE (j < L(i))
BODY X(ij)=1%*]
increment, j=j+1
ENDWHILE ENDWHILE
increment, i=i41
ENDWHILE ENDWHILE

Figure 8: Generic loop nest GENNEST (left) and
corresponding EXAMPLE (right); original version
after normalization.

assuming L(#) > 1 for all i. Even though this is correct
in our example, a more general loop flattening does
not rely on this assumption, as we will see in the next
section.

4 General Loop Flattening

Assume that we are given two fully parallelizable
nested loops like in the previous section; an extension
of the following to deeper loop nests is straightforward.
Each of the loops might be structured as a WHILE
loop, a DO-WHILE loop, a simple DO or FORALL
loop, or it might use conditional GOTO’s. The trans-
formation described here can be done either at the F77/
F77D level or at the F90s/pp level. For simplicity and
generality, we will present it here on the F77 level. A
corresponding F90ssap version can always be directly
derived by SIMDizing loops and replacing IF’s with
WHERE'’s.

As a first step, we normalize both loops by breaking
their control pattern into three phases for each nest-
ing level I; an initialization phase init;, a guard test,
and an incrementing step increment;. For example, a
control pattern like DO var = lo, hi, stride would
be broken into initj = var = lo, test; = (var < hi),
and increment) = var = var + stride. The resulting
loop nest GENNEST is shown in Figure 8, along with the
corresponding version of the EXAMPLE from the previous
section (of course, we usually expect BODY to contain

more computational work than in EXAMPLE).

Since GENNEST conservatively tests for loop comple-
tion before entering the loop body, all loops can be
brought into this normal form. To estimate the running
time of the above code on P processors, for processor
p let K, be the number of outer loop iterations and
L:,' be the number of inner loop iterations for the i-th
outer loop iteration. A straightforward MIMD version

“would then finish after

K,
—_ i
TIMEymp = max 3L

i=1

(1)

iterations.
A F90s/pp version could be derived by SIMDizing
both WHILE loops and would execute

maxf-, K,
TIMEsup =) ,max Ly (2)
=1 B

iterations. Again, if the number of iterations of the
inner loop varies from one outer loop iteration to
the next, then the restriction to a common program
counter makes this SIMD implementation inefficient.

Since we do not know whether the evaluation of test;
has any side effects, we introduce flags ¢; to store the re-
sults of evaluating the conditions test; before we make
any other transformations, see Figure 9. So far, con-
trol flow is still unchanged.

The key idea of loop flattening is to make sure
that each processor has a chance to advance to the
next loop iteration where it participates in the execu-
tion of BODY before the control flow actually reaches
BOD)Y. One requirement which follows immediately is
that control variables (iteration counts etc.) are repli-
cated to allow individual processors to advance inde-
pendently to the next outer loop iteration whenever
they are done with the current inner loop. Further-
more, we have to take BOD) out of the part of the
loop nest which handles the transition between differ-
ent iterations of the inner and outer loop. Each proces-
sor should be able to execute BOD)Y whenever it has
still work left to do in this loop nest and the control
flow reaches BOD)Y. In other words, BODY should be
executed whenever ¢, is true, independent of ¢;. The

init1 1=1
t; = testy ty = (l < K)
WHILE t, WHILE t,
inity j=1
ty = testa to = (_] < L(l))
WHILE t, WHILE t,
BODY X(ij) = i *j
incrementy j=3+1
ty = testy tg =(< L(l))
ENDWHILE ENDWHILE
increment, i=i+1
t; = testy ty = (i < K)
ENDWHILE ENDWHILE

Figure 9: GENNEST/EXAMPLE, with guard vari-

ables.
inity i=1
t; = test; t1 =31 < K)
IF t; THEN init; IF t; thenj=1
WHILE t, WHILE t, .
ta = tests t2 = (j < L(i)
WHILE (tl A tg) WHILE (t1 A— tz)
increment; i=i+1
t; = test; t, = (l < K)
IF t; THEN IF t; THEN
inito j=1
ty = testy ts = (§ < L(i))
ENDIF ENDIF
ENDWHILE ENDWHILE
IF t; THEN IF t; THEN
BODY X(ij)=1i#]
increment, i=j+1
ENDIF ENDIF
ENDWHILE

ENDWHILE

Figure 10: GENNEST/EXAMPLE, after flattening..

flattened loop version meeting these goals is shown in
Figure 10.

As the reader might verify, we still execute exactly
the same instructions in the same order and the same
number of times as we did in the original loop nest.
We also still have two nested loops. However, BODY
is lifted out of the inner loop. The inner loop now con-
tains just the control structure to let each processor
advance to the next iteration in which it actually exe-
cutes BODY. In other words, the processors still have
to run through BODY and the rest of the loop nest in
lockstep, but now they may be ezecuting effectively dif-
ferent loop iterations.

The above transformation is the most general, con-
servative one. It can be optimized for several special
cases; one common case is that

init1 i=1

inity j=1
WHILE test, WHILE (i < K)
BODY X(i,j) =1%]
increment; j=j+1
IF NOT test THEN IF NOT(< L(i))
increment, i=i+1
init, j=1
ENDIF ENDIF
ENDWHILE ENDWHILE

Figure 11: GENNEST/EXAMPLE, flattened and opti-
mized.

inity i=1
init, j=1
WHILE test, WHILE (i < K)
BODY X(ij)=1i=*j
IF done; THEN IF (j = L(i))
increment, i=i+1
inits j=1
ELSE ELSE
incrementy j=j+1
ENDIF ENDIF
ENDWHILE ENDWHILE

Figure 12: GENNEST/EXAMPLE after further opti-
mization.

1. testy, test; and init; have no side effects, and that

2. for each outer loop iteration, the inner loop is ex-
ecuted at least once.

Then we can safely transform the code into the simpler
version shown in Figure 11.
If it further is the case that

3. we can replace the guard test; with a test whether
we are in the last inner iteration, done; (for exam-
ple,inDO var = lo, hi, stride, wecan replace
test = (var < hi) with done = (var = hi)),

then we can save the last execution of incrementy, as
shown in Figure 12. The SIMDized equivalent EXAMPLE
of this version was shown in Figure 7.

5 Case Study with Molecular
Dynamics

The transformation described in the previous section
should be profitable whenever some processors sit idle
in an inner loop and still have work to do in later itera-
tions of the outer loop. This seems to be a situation po-
tentially occurring in many scientific programs solving

DO At; =1, N
F(At;) =0
DO pr = 1, pCnt(At;)
At; = partners (At,, pr)
F(At;1) = F(At1) + Force (Aty, Atz)
ENDDO
ENDDO

Figure 13: F90gs;pp version of the nonbonded force
calculation NBFORCE.

irregular problems [2, 19, 22, 23]. One example is the
GROMOS molecular dynamics program, which con-
tains several interesting kernels of this kind [6, 7, 10].
Here we want to focus on the calculation of the non-
bonded forces between individual pairs of atoms.

5.1 The application

Since the nonbonded forces between pairs of atoms
quickly decrease as the distances between them in-
crease, they are usually approximated by considering
only pairs of atoms which are closer together than a
predefined cutoff radius; typical values are in the order
of 10 A. Still, in the GROMOS code this kernel typi-
cally accounts for about 90% of the overall simulation
cost. For atom i, the atoms close enough to i are pre-
computed into an array partners(i,l:pCnt(i)). This
precomputation can be quite expensive in itself and
is usually done only every k simulation steps, where
k = 10 is one common value [20].

Figure 13 shows a F77 version NBFORCE for calcu-
lating the nonbonded forces between N atoms. This
code can be parallelized by partitioning the set of all
atoms into P disjoint subsets and assigning one sub-
set to each processor p. To achieve load balancing, the
sum over the number of the partners of the atoms in a
processor’s subset should be roughly equal across the
processors. Furthermore, to achieve locality and scal-
ability, the atoms within each subset should be closely
together in space.

Figure 14 shows a F90s/pp program which lays out
the data in a cyclic fashion. If we assume for simplicity
that P divides N, then each processor computes the
nonbonded forces for N/P atoms. The uneven atom
density results in varying values of pChat; therefore, the
inner loop with the (relatively expensive) force calcu-
lation often has to be executed with processors masked
out even though they still have work to do in later
iterations, just as it was the case in the EXAMPLE in
Section 3. All processors have to go through

N/P
TIMEsup = Y max_ pCnt(Atom}) (2")
p=l...

i=1

iterations, where Atom;', is the i-th Atom of processor p.

F=0
Aty = [l : P]
lastAt = [N—P+1: N}
WHILE ANY (At; < lastAt)
WHERE (At; < lastAt)
DO pr = 1, max(pCnt(At,))
WHERE (pr < pCnt(At,))
At; = partners (At,, pr)
F(At1) = F(Aty) + Force (Aty, Atz)
ENDWHERE
ENDDO
Aty = At + P
ENDWHERE
ENDWHILE

Figure 14: F90s/pp version of NBFORCE.

F=0

Aty = [1 : P]

lastAt = [N—P+1: N]
pr=1

WHILE ANY (At; < lastAt)
WHERE (At; < lastAt)
Aty = partners (At,, pr)
F(Atl) = F(Atl) + Force (Atl, Atz)
WHERE (pr = pCnt(At,))
Aty = At + P
pr=1
ELSEWHERE
pr=pr+1
ENDWHERE
ENDWHERE
ENDWHILE

Figure 15: Flattened F90s;pp version of NBFORCE. We
take into account that pCnt(i) > 1 for all i.

This can be improved on by applying loop flatten-
ing, where we take into account that each atom has
at least one interaction partner. The result is shown
in Figure 15. Now each processor can loop through its
atoms individually, so this code achieves the same time
bound as a MIMD implementation:

N/P
lat _ i
TIME{jyup = max, 5;; pCnt(Atomi), (1)
which is only limited by the quality of our workload
distribution.

5.2 The hardware used

We implemented the nonbonded force kernel taken
from the GROMOS program suite on two SIMD ma-
chines and one workstation. Our implementation mod-
els the behavior of the actual GROMOS routine by
reading in the arrays pCnt and partners as produced
by GROMOS and then generating the calls to a force

routine for each interaction pair. To exclude commu-
nication time from our measurements, we assume that
the pCnt and partners arrays and the molecular con-
figuration data (including the coordinates of atoms we
are interacting with) are already locally available when
calling the force routines.

The DECmpp 12000 model 8B (Digital Equip-
ment Corporation), which is identical to the MasPar
MP-1200 series model, consists of 8192 processors (up
to 16384 available), which are arranged in a mesh topol-
ogy. It has 64 Kbytes main memory per processor,
which gives 512 Mbytes total. Based on clock cycle
counts, the individual processors are rated at 1.8 Mips.
They are joined by an array control unit rated at 14
Mips. The MPFortran version we had on site (1.0)
did not allow the use of indirect array addressing in
FORALL statements, so the timing results presented
here are achieved using an a-version of the 2.0 compiler
at MasPar which does not have this restriction.

The CM-2 (Thinking Machines Corporation) con-
sists of 8192 one-bit processors (up to 65536 avail-
able), arranged in a hypercube topology. These are
enhanced with 128 64-bit vector Floating Point Ac-
celerators (FPA’s) which use vector registers of length
four. Each FPA is shared by two processor nodes of 32
processors each. The processors have 256 Kbits mem-
ory per processor, yielding a total of 268 Mbytes. The
performance measured for a BYTE ADD is 500 Mips.
We compiled our codes using the Slicewise 1.1 CMFor-
tran compiler which lays out the data “slicewise” across
the one-bit processors and uses the FPA’s directly.

We also implemented the kernel on the Sparc 2
(Sun Microsystems, Inc.), which is rated at 28 Mips
and whose 16 Mbytes memory allowed us to run the
smaller test cases. We compiled our program with the
Sun f77 compiler.

One additional interesting machine parameter is the
data granularity which measures how small an array
can be if we want to distribute it across all processors.
This granularity, Gran, is particularly important on
SIMD machines since whenever a certain array has to
be manipulated by some processors, all processors have
to step through the operation and they will be merely
masked out if they do not actually own part of the ar-
ray. Furthermore, this potential waste of processing
time can not only occur for small arrays, but it is en-
countered whenever array sizes are not exact multiples
of Gran [15]. On the CM-2, using the slicewise com-
piler results in Gran = P % 4/32 = P/8 (32 processors
per FPA, vector length 4); i.c., we can economically
use arrays whose total sizes are arbitrary multiples of
P/8. This is a major advantage of the Slicewise model
over the Paris model, which allocates data per one-bit
processor. The corresponding data granularity on the
DECmpp is simply Gran = P, and on the Sparc it is
obviously Gran = 1.

Furthermore, the SIMD machines differ in the way
they distribute data across the processors, which is sig-
nificant if a dimension larger than Gran is distributed.
The difference can be summarized as a cyclic (“cut-
and-stack”) data layout on the DECmpp and a block-
wise layout on the CM-2.

5.3 Implementation experience

The DECmpp program and the CM-2 program used a
single source, annotated with two sets of compiler di-
rectives, one for each machine. This worked relatively
well; the only exception in our code was the reshape in-
trinsic. (The CMFortran convention for the argument
order of this function is mold argument first, source
argument second; MPFortran calls the mold argument
shape, and has the order reversed. This combination
of incompatibilities necessitated separate include files
when using reshape; another option we tried was to re-
place the reshape’s with explicit forall statements,
which caused a slight performance degradation on both
machines.) The Sparc implementation shared the code
for performing I/O and gathering timing statistics.

On the DECmpp, a compiler switch is used to recom-
pile for different machine sizes. No compiler switch is
needed for CM-2 since it uses a virtual processor model
which adjusts automatically to the actual machine size.
However, we can still obtain significant performance
improvements if compile time constants are used to ad-
just array dimensions to actual machine configurations.

The indirect addressing used in the flattened loop
version frequently required resorting to FORALL’s in
the source code. For example, the statement

forall(i=1:P) at2(i) = partners(i,1(i),pr(i))
cannot be expressed with indirection vectors as
at2 = partner(:,l,pr)

since this expression would yield a three-dimensional
array with at2(i,j,k) = partners(i,1(j),pr(k))
instead of the desired one-dimensional array computed
in the forall statement. However, implementing the
flattend F90gspp version from Figure 15 was still rela-
tively straightforward. The derived code, Ly, ran well
on both machines without further tuning; it is shown
in Figure 16. Lrs is the number of memory layers (or
virtual processor slices) which are in actual use; it is
Lrs = |1 4+ (N —1)/Gran|. The dimensions indexed
with 1:Lrs are of size maxLrs = |1+ (Nmaz — 1)/P};
for our implementation, the maximal number of atoms
simulated is Nmgz = 8192. For example, for Gran =
128 and the N = 6968 atom test case described in
Subsection 5.4, it is Lrs = 55 and maxLrs = 64; for
Gran = 8192, we have Lrs = maxLrs = 1.

Our experience with the implementation of the un-
flattened loop version was very different. The initial

subroutine Al11FFlat()
c Formal parameters omitted here;
r F, pCnt, partners are distributed
' in first dimension

integer ati1(P),at2(P),1(P),pr(P),m(P)
real Force(P)

cmf$ layout Force,ati,at2,l,pr,m

cmpf ondpu Force,ati,at2,l,pr,m

0
1
pr =1
at1 = [1:P]
do while(any(l.le.Lrs))
forall(i=1:P) at2(i) =
partners(i,1(i),pr(i))
call OneFFlat(Force, atl, at2)
forall(i=1:P, 1(i).le.Lrs)
F(i,1(i)) = F(i,1(i)) + Force(i)
forall(i=1:P) m(i) =
(pCnt(i,1(i)).ge.pr(i))
where (m)
pPr = pr + 1
elsewhere
pr =1
l1=1+1
atli = at1 + P
endwhere
enddo

F
1l

Figure 16: CMFortran/MPFortran version of flattened
NBFORCE.

implementation of the pseudocode in Figure 14 was
trivial to write, but its performance was roughly an
order of magnitude worse than the flattened version
on both machines and required significant performance
debugging. We tried several different implementations
using interface blocks, layout directives, inlining, differ-
ent compiler switches, etc.; parameter arrays were au-
tomatic, fixed size, or passed in COMMON blocks; the di-
mension corresponding to different atom numbers was
either left as a single dimension (as in Force(1:Nmax)),
or split up into physical processor number and memory
layer (as in Force(1:P,1:maxLayers)); we tried DO-
WHILE loops (as in do while(any(pr.le.pCnt)))
and DO-ENDDO loops with precomputed loop bounds
(do pr = 1, maxPCnt); we also tried vectorizing the
code in the dimension indexed by pr, but this was un-
feasible due to the size of partners.

We here present timing results for two different un-
flattened versions; the first version, L1, is shown in Fig-
ure 17. The other version, L2, differs from L} in that

subroutine A11F()

C Formal parameters omitted here;
C F, pCnt, partners are distributed
C in first dimension

integer ati(P,maxLrs),at2(P,maxLrs)
real Force(P,maxLrs)

cmf$ layout Force(:news,:serial)

cmf$ layout ati(:news,:serial)

cmf$ layout at2(:news,:serial)

cmpf ondpu Force,atl,at2

cmpf map Force(allbits,memory)

cmpf map ati(allbits,memory)

cmpf map at2(allbits,memory)
integer pr

F =
at1

o

reshape(shape = [P,maxLrs],
source = [1:Nmax])
maxPCnt = maxval(pCnt)
do pr = 1, maxPCnt
at2(:,1:Lrs) = partners(:,1:Lrs,pr)
call OneF(Force,atl,at2)
where (pCnt.ge.pr)
F(:,1:Lxs) = F(:,1:Lxrs) +
Force(:,1:Lrs)
endwhere
enddo

Figure 17: CMFortran/MPFortran version of unflat-
tened NBFORCE.

«,n

all explicit “1:Lrs” indices are replaced with just a “:
referring to the whole dimension. Note that the dimen-

- sion indexed with 1:Lxrs is laid out serially into local

memory. Theoretically the machine front end could
take advantage of the explicit subscripts of the L. ver-
sion by pruning the number of processed memory lay-
ers. However, in practice it turns out that, at least on
the CM-2, the processors will always cycle through all
layers of memory. Doubling N,z (and therefore dou-
bling maxLrs) and leaving all other parameters fixed
results therefore not only in doubling execution time
of the L2 version on both machines, but on the CM-2,
it also doubles running time of the L} version; on the
DECmpp, the Ll time increases by about 5%. The
running time of L, is independent of N,z on both
machines, which is a nice side effect of loop flattening.
Therefore, using the Ll loops does not automatically
result in savings by reducing the number of processed
layers; however, we have to pay the additional overhead
of checking on each layer whether it is active [5]. This
overhead is saved in the L2 version.

Number of Noobonded Pairs for Superoxide Di Molecule (SOD)

14001

Pairs per atom
T
.,

oz 4 6 & 10 1z 14 16 18 20
Cutoff radius (Angstroms)

Figure 18: Maximum and average number of non-
bonded force interaction partners per atom for the
superoxide dismutase molecule, using different cutoff
radii.

5.4 The input data

We ran our test case for the bovine superoxide dis-
mutase molecule (SOD), which has N = 6968 atoms.
SOD is a catalytic enzyme composed of two identical
subunits, each with 151 amino-acid residues and two
metal atoms [20].

Figure 18 shows maximal and average numbers of
interaction partners, pCnt,,,, and pCnt,,., which in-
dicate the computational workloads for different cutoff
radii. As expected, both values increase cubicly with
the cutoff radius. As indicated in Equations 1” and 2",
the difference between maximum and average number
of partners gives us an upper bound on how much im-
provements we can expect from loop flattening.

5.5 The results

Table 1 gives performance results for the CM-2 and the
DECmpp 12000, which are also displayed in Figure 19.
For comparison, the running times on the Sparc were
3.86 seconds for the 4 A case and 31.43 seconds for
the 8 A case. All runs were done several times,
the differences in running times were usually less than
0.01%. '

All loop versions were also timed with inlined calls
to the force routine. On the CM-2, the effect was
marginal; on the DECmpp, fluctuations were within
5%, roughly evenly distributed in both directions.

Table 2 gives the number of calls to Force routine for
the flattened and the unflattened loop versions (the lat-
ter number scaled up by Lrs to account for the different
argument sizes of OneF () and OneFFlat()) for different
data granularities, along with their ratios. Note that
the counts given in the last row are actually the max-

ima of pChnt for the corresponding cutoff radii, as given
in Figure 18. The given L,/L; ratios are bounded by
the pCnt,,,./pCnl,,, ratios, which are 3.347, 2.689,
2.665, and 2.949 for cutoffs 4 A, 8 A, 12 A, and 16 A,
respectively.

5.6 Interpretation

Considering the different computing powers per indi-
vidual processor, the overall speedups of the parallel
codes over the Sparc code version were satisfactory.
However, we have to take into account that we excluded
communication costs from our study. Due to the irreg-
ular nature of the problem, these communication costs
might be relatively high; but as indicated earlier, the
communication requirements are not changed by our
transformation.

When comparing Tables 1 and 2, loop flattening ful-
fills the expectations given by Equations 1” and 2".
Despite the significant effort on speeding up the unflat-
tened loop versions (as described in Subsection 5.3),
the improvements of the flattened version often went
beyond what we predicted from the pCnt,,,./pCnt,,,
ratios, in particular on the DECmpp. We assume that
this is largely due to the side effect mentioned in Sub-
section 5.3, namely that loop flattening makes actual
running times less dependent on array sizes if we do
not access all parts of the array; i.e., we can increase
Npmez Without automatically making Ly slower (unlike
for L2 and even L). This we consider a significant ad-
vantage in practice, since it allows compiling programs
with provision for maximal problem sizes without pay-
ing a penalty on smaller sizes.

Moreover, it turned out that the effort of expressing
array bounds in terms of actual machine sizes improved
the unflattened loop versions as well. This was partic-
ularly beneficial for the virtual processor model of the
CM-2.

The differences between the two unflattened loop
versions L} and L2 were larger on the CM-2 than on
the DECmpp, as mentioned in Subsection 5.3. How-
ever, even on the DECmpp L2 performed better than
L} when Lrs approached maxLrs.

It is important to keep in mind that the slicewise
compiler for the CM-2 actually generates code with a
data granularity of Gran = P/8, as discussed in Sub-
section 5.2. This coarser granularity results in more
atoms per processor and therefore better applicability
of loop flattening. As the table and the graph indicate
for the CM-2, several cases could be run with the L,
version with reasonable performance while they could
not be run at allin L} or L2 because of stack overflows;
large temporary arrays were needed in L} and L even
in loop versions which forward substituted intermedi-
ate results.

4A 8A 124 16A

P/Gran L} L2 L; L} L? Ly L} L2 Ly L L2 Ly
1024/128 3.89 27.03

2048/256 || 6.57 | 3.86 | 2.13 || 42.91 | 25.13 | 14.72

4096/512 || 3.22 | 1.83 | 1.11 | 21.02 | 11.95 | 7.65 24.78

8192/1024 || 1.72 | 0.99 | 0.64 || 11.19 | 6.46 | 4.57 13.31 27.17
1024/1024 [| 0.910 | 0.934 | 0.390 || 5.36 | 5.85 | 2.81 || 15.91 | 17.45 | 8.19 || 36.86 | 40.45 | 16.84
2048/2048 || 0.638 | 0.481 | 0.266 || 3.35 | 3.00 | 1.69 || 9.96 | 8.95 | 4.98 | 23.07 | 20.71 | 10.68
4096,/4096 || 0.352 | 0.269 | 0.157 || 1.86 | 1.55 | 1.05 || 5.18 | 4.59 | 3.14 || 11.96 | 10.58 | 6.51
8192/8192 |l 0.145 | 0.129 | 0.104 || 0.683 | 0.715 | 0.671 || 1.92 | 2.09 | 2.00 | 4.42 | 4.82 | 4.66

Tal:ie 1: Performance results for the CM-2 (upper half) and the DECmpp (lower half). Running times (in seconds)
are listed for different cutoff radii and different loop versions. Ll: unflattened loop selecting memory layers, L2:
unflattened loop using all memory layers, L;: flattened loop.

4A 8A 124 16A
Gran || Ly | Ly | Lu/Ly || L | Ly || Lu/Ly || Lu | Ly || Lu/Ly Ly Ly || Lu/Ly
128 722 5076
256 || 924 | 397 || 2.327 || 6048 | 2754 || 2.196
512 || 462 | 224 || 2.063 || 3024 | 1559 || 1.940 4649
1024 [231 | 125 || 1.848 | 1512 | 906 || 1.669 || 4536 | 2642 || 1.717 || 10528 | 5436 || 1.937
2048 |l 132 | 86 || 1.535 || 864 | 545 || 1.585 || 2592 | 1606 || 1.614 || 6016 | 3434 || 1.752
4096 || 66 | 51 || 1.210 || 432 | 357 || 1.210 | 1296 | 1069 || 1.212 [3008 | 2222 || 1.354
8192 || 33 | 33 1 216 | 216 1 648 | 648 1 1504 | 1504 1

Table 2: Number of calls to Force routine, flattened/unflattened version. The data granularity, Gran, is equal to
P for the DECmpp and P/8 for the CM-2. L, counts are multiplied with Lrs.

6 Loop Flattening from the
Compiler’s Perspective

The discussion so far seems to advocate a certain style
of SIMD programming for applications which can ben-
efit from loop flattening, just as a certain style of pro-
gramming emerged when vector machines became pop-
ular. However, this would be contrary to existing ef-
forts to make programming independent from machine
idiosyncrasies, as for example the development of the
Fortran D language. For non-SIMD machines, it still
seems natural and efficient to have the inner loop bod-
ies contained in the inner loops, even though flattened
loops should run well on these machines also. There-
fore, we suggest to make loop flattening part of the
optimizing repertoire of SIMD compilers.
Applicability is ensured whenever there are multi-
ple loops fully contained in each other, i.e., there are
not several loops on the same nesting level. This can
be easily derived from the abstract syntax tree. Fur-
thermore, the normalized version always tests the loop
guard test; before executing BODY, so we cover all
loop constructs. The transformation itself is relatively
straightforward; for example, there are no parameters

10

to adjust, unlike in loop skewing. The first step of the
transformation is to identify the three phases init, test,
and increment.

WHILE/DO-WHILE loops: The relevant phases
can be identified from their position between
the WHILE/ENDWHILE keywords. Since incre-
ment; and BOD) stay together throughout the
transformation, we actually do not need to sepa-
rate these two phases. :

DO/FORALL loops: The phases can be derived di-
rectly from the loop header, as exemplified earlier.

GOTO loops: Similarly to WHILE loops, we can
identify the phases by their position between la-
bels and jumps.

After normalization, the introduction of flags ¢; and the
actual code rearrangement follow straightforwardly. As
described in Section 4, we also can often detect oppor-
tunities for further optimizations, for example when we
are transforming simple DO/FORALL loops.

In evaluating profitability, we note that the addi-
tional overhead caused by loop flattening is, in the
worst case, to manipulate two flags and to perform two

Running times for CM-2

102 ¢

Running time (seconds)

10
108

Number of processors

Figure 19: Performance results for the CM-2 and the DECmp

Running time (seconds)

102 ¢
10t
“on._qiolf=12 Ang |
N
loo L"wr-.
10

Number of processors

p 12000. Different loop versions vary in line style;

dashes: unflattened loop selecting memory layers; dots: unflattened loop using all memory layers; solid lines:

flattened loop. Different cutoff radii are indicated by point styles;

circles: 4 A, plusses: 8 A; stars: 12 A; crosses:

16 A. For judging speedups, note the log-log scale and the aspect ratio.

conditional jumps. So we can relatively safely assume
profitability whenever the inner loop bounds may vary
across the processors.

As with many code transformations, the hardest
problem in automating loop flattening is to determine
its safety. A sufficient condition is that the loop into
which we lift an inner loop body can be parallelized,
which might be hard to detect, especially if indirect
addressing occurs. However, this is already a neces-
sary condition for parallelizing loops in general, and
therewith a standard problem for parallelizing compil-
ers [13]. The same technology developed there can be
applied here.

When safety is ensured, either by user information
(like a FORALL loop header) or by “heroic depen-
dence analysis,” we expect that the systematic loop
flattening transformation, as described in Section 4,
can be implemented efficiently into compilers like the
Fortran D compiler in the ParaScope programming en-
vironment (14].

11

7 Related Work

The restricted control flow of pure SIMD programming
has been addressed by several researchers. Phillipsen
and Tichy introduce two variants of a FORALL state-
ment, a synchronous version and an asynchronous
one [17). The asynchronous FORALL allows multi-
ple threads of control to coexist. This can either be
emulated using stacks of MASK bits, or it can be im-
plemented directly in an MSIMD machine which con-
tains multiple program counters. In either case, their
proposal is mainly concerned with allowing the con-
current execution of both branches in IF-THEN-ELSE
constructs; it does not directly apply to inner loops
with varying bounds.

Loop flattening can also be used to process multiple
array segments of different lengths per processor, as
introduced in Blelloch’s V-RAM model [3]. Thus it
can be viewed as a generalization of substituting direct
addressing with indirect addressing as Tomboulian and
Pappas did for computing the Mandelbrot set [22].

Loop flattening bears similarities to loop coalescing

in that it also manipulates loop control flow, but it is

y different in its motivation and final outcome [18].
Loop coalescing merges iteration variables to achieve a
higher degree of parallelism and to allow a more flexible
« stribution of inner loop iterations among the proces-
so-3. Although loop flattening can also simplify load
balancing, the transformation per se does not change
which loop iterations a processor executes. Instead, it
gives it more freedom as to when it executes them.

To conclude, the relative performance difference be-
tween conventional and flattened F90s/pp programs
will depend on the variance of the cost of the inner
loops for different outer loop iterations. We expect the
difference to be significant in many cases, as it was for
the application described in this paper. Furthermore,
we believe that current compiler technology can auto-
mate this transformation effectively. If this were done,
it would represent another significant step toward com-
piier support of architecture independent parallel pro-
gramming for a large class of irregular scientific prob-
lems.

Acknowledgements

We are very grateful to Terry Clark and Ridgway Scott

or providing detailed knowledge and experience about
parallelizing molecular dynamics codes. Terry also sup-
plied us with the pairlist data for the SOD molecule
simulated in our experiments. Special thanks to Jim
Armstrong from MasPar, who was an invaluable source
of information and very helpful with the DECmpp im-
plementation. Mark Mazina assisted with both the
DECmpp and the CM-2 programming. We also wish
to thank Chuck Koelbel and Jerry Roth for many prof-
itable discussions about solving irregular problems on
parallel computers and about SIMD related problems.
Matthias Felleisen gave helpful comments on the sub-
mitted abstract.

References

[1] T.Bemmerl, A. Bode, O. Hansen, and T. Ludwig. A testbed
for dynamic loadbalancing on distributed memory multi-
processors. PUMA Working Paper 14, Technical University
Munich, Miinchen, Germany, August 1990.

H. Berryman, J. Saltz, W. Gropp, and R. Mirchandaney.
Krylov methods preconditioned with incompletely factored
matrices on the CM-2. Journal of Parallel and Distributed
Computing, 8:186-190, 1990.

G.E. Blelloch. Vector Models for Data-Parallel Computing.
The MIT Press, 1990.

T. Braunl. Structured SIMD programing in Parallaxis.
Structured Programming, 10(3):121-132, 1989.

P. Christy. Virtual processors considered harmful. In Pro-
ceedings of the 6th Distributed Memory Computing Confer-
ence, Portland, OR, April 1991.

[T. W. Clark, R. v. Hanxleden, K. Kennedy, C. Koelbel,
and L. R. Scott. Evaluating parallel languages for molecu-

(2]

(3
[4]
(5]

12

(7]

(8

%)

(10]

(11]

(12]

(13]

4]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

lar dynamics computations. In Scalable High Performance
Computing Conference, Williamsburg, VA, April 1992.

T. W. Clark, R. v. Hanxleden, J. A. McCammon, and
L. Ridgway Scott. From sequential to parallel molecular dy-

namics. In Intel Supercomputer University Pariners Con-
ference, Timberline Lodge, Mt. Hood, OR, April 1992.

G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-
mer, C. Tseng, and M. Wu. Fortran D language specifica-
tion. Technical Report TR90-141, Dept. of Computer Sci-
ence, Rice University, December 1990. Revised April, 1991.

G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
and D. Walker. Solving Problems on Concurrent Multipro-
cessors. Prentice-Hall, 1988.

W. F. van Gunsteren and H. J. C. Berendsen. GRO-
MOS: GROningen MOlecular Simulation software. Tech-
nical report, Laboratory of Physical Chemistry, University
of Groningen, Nijenborgh, The Netherlands, 1988.

R. v. Hanxleden and L. R. Scott. Load balancing on message
passing architectures. Journal of Parallel and Distributed
Computing, 13:312-324, 1991.

Proceedings of the High Performance Fortran Forum, Hous-
ton, TX, January 1992.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler sup-
port for machine-independent parallel programming in For-
tran D. In J. Saltz and P. Mehrotra, editors, Compilers
and Runtime Software for Scalable Multiprocessors. Else-
vier, Amsterdam, The Netherlands, to appear 1992.

K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and
transformation in the ParaScope Editor. In Proceedings of
the 1991 ACM International Conference on Supercomput-
ing, Cologne, Germany, June 1991.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization:
Allocation of arrays to reduce communication on SIMD ma-
chines. Journal of Parallel and Distributed Computing,
8(2):102-118, February 1990.

MasPar Computer Corporation, Sunnyvale, CA. MasPar
Fortran Reference Manual.

M. Phillipsen and W. F. Tichy. Modula-2* and its com-
pilation. In First International Conference of the Aus-
trian Center for Parallel Computation, Salzburg, Austria,
September 1991.

C. D. Polychronopoulos. Loop coalescing: A compiler trans-
formation for parallel machines. In S. Sahni, editor, Proceed-
ings of the 1987 International Conference on Parallel Pro-
cessing, St. Charles, IL, August 1987. Pennsylvania State
University Press.

J. Saltz, S. Petiton, H. Berryman, and A. Rifkin. Perfor-
mance effects of irregular communication patterns on mas-
sively parallel multicomputers. ICASE Report 91-12, Insti-
tute for Computer Application in Science and Engineering,
Hampton, VA, January 1991.

J. Shen and J. A. McCammon. Molecular dynamics simula-
tion of Superoxide interacting with Superoxide Dismutase.
Chemical Physics, 158:191-198, 1991.

Thinking Machines Corporation, Cambridge, MA. CM For-

tran Reference Manual

S. Tomboulian and M. Pappas. Indirect addressing and
load balancing for faster solutions to the Mandelbrot set on
SIMD architectures. In Frontiers90: The Srd Symposizm
on the Frontiers of Massively Parallel Computation, pages
443-450, College Park, MD, October 1990.

M. Willebeek-LeMair and A. P. Reeves. Solving nonuni-
form problems on SIMD computers: Case study on region
growing. Journal of Parallel and Distributed Computing,
8:135-149, 1990.

