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Abstract

Recent algorithmic advances utilizing hierarchical data structures have resulted
in a dramatic reduction in the time required for computer simulation of N-body
systems with long-range interactions. Computations which required O(N?) oper-
ations can now be done in O(N log N) or O(N). We review these tree methods
and find that they may be distinguished based on a few simple features.

The Barnes-Hut (BH) algorithm has received a great deal of attention, and
is the subject of the remainder of the dissertation. We present a generalization of
the BH tree and analyze the statistical properties of such trees in detail. We also
consider the expected number of operations entailed by an execution of the BH
algorithm. We find an optimal value for m, the maximum number of bodies in a
terminal cell, and confirm that the number of operations is O(N log V), even if
the distribution of bodies is not uniform.

The mathematical basis of all hierarchical methods is the multipole approxi-
mation. We discuss multipole approximations, for the case of arbitrary, spherically
symmetric, and Newtonian Green’s functions. We describe methods for comput-
ing multipoles and evaluating multipole approximations in each of these cases,
emphasizing the tradeoff between generality and algorithmic complexity.

N-body simulations in computational astrophysics can require 10% or even
more bodies. Algorithmic advances are not sufficient, in and of themselves, to
make computations of this size feasible. Parallel computation offers, a priori, the
necessary computational power in terms of speed and memory. We show how the
BH algorithm can be adapted to execute in parallel. We use orthogonal recursive
bisection to partition space. The logical communication structure that emerges
is that of a hypercube. A local version of the BH tree is constructed in each

processor by iteratively exchanging data along each edge of the logical hypercube.



vii

We obtain speedups in excess of 380 on a 512 processor system for simulations of
galaxy mergers with 180000 bodies. We analyze the performance of the parallel
version of the algorithm and find that the overhead is due primarily to interpro-

cessor synchronization delays and redundant computation. Communication is not

a significant factor.
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1

1. Hierarchical Techniques and N-body Simula-
tions |

Physical systems may be studied by computer simulation in a variety of ways.
Simulations with digital computers are constrained by factors associated with the
finite speed of computation and the'ﬁnite size of the computer. Generally, these
factors require that the first step in any computer simulation of a physical phe-
nomenon be to develop a mathematical model of the phenomenon consisting of a
finite number of discrete parts. The correspondence between the discrete compo-
~ nents in the computer simulation and the physical phenomenon itself is completely

arbitrary, limited only by the imagination of the scientist.

Often, the discretization is arrived at indirectly, by means of partial differen-
tial equations. First, one models the physical system by a set of partial differential
equations. Then, one applies techniques of discrete approximation such as finite
difference methods or finite element methods to recast the mathematical problem
into a discrete form. An alternate, and less widely used, approach is to discretize
the physical system into a finite set of “bodies” or “particles” which interact with
one another as well as with externally applied “forces.” The bodies carfy some
state information which is modified as the simulation proceeds, according to the
interactions. Simulations based on this type of discretization are referred to as
“N-body” simulations. Hockney and Eastwood[1] have extensively reviewed the
techniques of N-body simulations, as well as applications in plasma physics, semi-
conductor device simulation, astrophysics, molecular dynamics, thermodynamics
and surface physics. Applications also exist in fluid mechanics,[2, 3, 4] applied

mathematics,[5] and undoubtedly other areas as well.

In the simplest case, the state information associated with each body may
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consist of a position and a velocity, and the interaction between bodies is a model
for some kind of force law. The dynamical state of the system is evolved by alter-
nately adjusting the velocities based on accelerations that result from interparticle

interactions, and the positions, based on the velocities.

1.1. Categories of N-body simulations.

In their monograph, Hockney and Eastwood[1] classify N-body methods broadly
into three categories:

1. Particle-Particle (PP) methods.

2. Particle-Mesh (PM) methods.

3. Particle-Particle Particle-Mesh (PPPM or P3M) methods.

We briefly review these methods to provide context for the discussion of tree

methods which follows.

1.1.1. PP methods.

In PP methods, particles interact directly with one another. The basic control

structure, which is repeated over and over as the simulation proceeds, is outlined

in Codes 1.1 and 1.2.

ComputeAllInteractions
for(each body, b)
Computelnteraction(of b with all other bodies)
endfor
for(each body b)
UpdatelnternalState(d)
endfor

endfunc

Code 1.1. Function to compute all pairwise interactions among a set of
bodies.

PP methods are particularly useful because of their simplicity. Often, the
interaction follows directly from a well understood physical interaction with lit-

tle or no approximation, e.g., the Newtonian force of attraction between massive



Computelnteraction(d)
:fo;r:(each body, bj2b; #b )
PairInteraction(b, b;)
endfor

endfunc

Code 1.2. Function to compute all interactions with a particular body,

b.

bodies. The simplicity of Codes 1.1 and 1.2 allows for straightforward expression
in a suitable computer language like C or FORTRAN. The simplicity also allows
one to easily take advantage of “vectorization,” whereby the full power of modern
supercomputers can be efficiently used. Parallelization is also reasonably straight-
forward,[6] making it possible to use large parallel computing systems which de-
rive their speed and cost-effectiveness from the assembly of numerous modest,

autonomous processors into a single parallel system.

The most significant drawback of PP methods is their scaling for large num-
bers of bodies. An implementation following Codes 1.1 and 1.2 requires each body
to interact with every other body in the system. Each time Code 1.1 is executed,
the function PairInteraction is called N(IN —1) times, where N is the number of
bodies in the simulation. Even if Code 1.2 is modified to take advantage of a com-
mutative interaction, i.e., one for which PairInteraction(b;,b;) is equivalent to
PairInteraction(by,b;), then PairInteraction is executed only half as many
times. Unfortunately, this does little to mitigate the rapid growth, proportional
to N2.

If the interaction between particles is short-range, then Code 1.2 can be re-
placed with Code 1.3. The loop in Code 1.3, which is restricted to bodies in a
ball of radius r¢y: around b, requires computation of only Nn.isn pair interactions,
where Npeign is the number of bodies in the ball. For homogeneous systems,
Npeigh is of O(1), i.e., independent of N. Hockney and Eastwood describe data
structures which allow one to select the Ny.i;n neighbors in a ball of fixed r#dius

from the entire set of NV bodies in time O(Npigh). Thus, the entire calculation of



4

Code 1.1 requires only O(N Nn.igr) executions of PairInteraction. Of course, if
Nneigh is very large, this may be little improvement over the the O(NN2) behavior
of Code 1.2.

If the interaction does not have a natural distance cutoff, PP methods are

limited to situations in which N < few x 10%.

ComputeShortRangeInteraction (b)
for(each body b; > Separation(b,b;) < rcut)
PairInteraction(b, b;)
endfor

endfunc

Code 1.3. An alternative form of Computelnteraction, applicable
when the interaction is negligible beyond a distance of reys.

1.1.2. PM methods.

PM methods offer the advantage of O(NN) behavior for large N, even if the interac-
tion cannot be neglected outside of some distance cutoff. However, they introduce
approximations which may be problematical. PM methods are applicable when
the interaction is expressible as the solution of a differential equation, discretized
onto an auxiliary rﬁesh. Electromagnetic and gravitational interactions have this
property, with

a=-Vé¢, (1.1)

V24 = —47Gp. (1.2)

The values of p on the mesh are computed from the locations of the bodies. Then,
Poisson’s Equation, Eqn. 1.2, is solved. Finally, a discrete approximation to the
gradient in Eqn. 1.1 is evaluated, and the values of the acceleration, @, are inter-
polated at the position of each body. The dominant contribution to the overall
time required by PM methods is the solution of Poisson’s Equation. Hockney and
Eastwood discuss several methods for solution of Poisson’s Equation. It is likely

that these methods have been superseded in the intervening years by multigrid
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methods,[7, 8] which converge in time O(Nmesr), With a remarkably small con-
stant of proportionality, where N, is the number of grid points in the discrete
mesh.

Hockney and Eastwood discuss the relationship between N and Nyesn. Gen-
erally speaking, the two should be roughly comparable. Otherwise, laboriously
obtained information is thrown away each time one moves back and forth between
the mesh representation and the body representation.

The approximation introduced by the PM method generally results in de-
pressing the strength of short-range interactions. The interaction between any
bodies whose separation is less than a few mesh spacings will be significantly re-
duced from the PP case. In some circumstances, this “error” actually results in
the simulation more faithfully representing the physical phenomena, e.g., collision-
less plasmas. In any event, PM methods can only model phenomena on length
scales larger than a few mesh spacings. Thus, the smallest interesting length scales
dictate the required mesh spacing. If the system under study is highly inhomoge-
neous, with length scales extending over a few orders of magnitude, then the size

of the mesh may become prohibitive.

1.1.3. PPPM methods.

Finally, Hockney and Eastwood discuss PPPM methods. These methods attempt
to recover some of the accuracy lost by PM methods without reintroducing the
O(N?) behavior of PP methods. In essence, a carefully designed short-range inter-
action is computed by PP methods, as in Code 1.3. This additional force is added
to the usual PM interaction. The short-range component is an analytic approxi-
mation to the error introduced by the PM method. Since the error introduced by
the PM method is of limited range, i.e., a few mesh spacings, the correction may
be computed using Code 1.3 in time O(N Npeign ).

PPPM methods still encounter difficulty with highly inhomogeneous systems.
When the range of length scales is large, one is faced with a choice between a very

large mesh, or a very large average value of Nypeigh. If Nmesn is comparable to
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N, then Np.i;» may be a significant fraction of N, leading to O(N?) behavior,
albeit with a much smaller constant of proportionality than simple PP methods.
Furthermore, the great simplicity of Code 1.2 which facilitated efficient vectoriza-
tion and parallelization is lost for PPPM techniques. Although still possible, it

requires considerably more effort to vectorize or parallelize a PPPM method.

1.2. Tree methods

Since Hockney and Eastwood’s monograph was published, an entirely new class of
particle simulation methods has emerged as an alternative to PP, PM or PPPM
methods. These methods are characterized by an organization of particles into a
hierarchy of clusters, which span the full range of length scales from the minimum
interparticle spacing up to the diameter of the entire system. These methods are
usually referred to as “tree methods” or “hierarchical methods” because of the

data structures which are used.

1.2.1. Appel’s method.

Hierarchical data structures were introduced into astrophysical N-body simulations
by Appel.[9] It has been known for some time that the gravitational effect of a large
group of bodies may often be approximated by the effect of a single object located
at the center of mass.[10] Appel realized that one can use this fact to significantly
reduce the computational complexity of the gravitational N-body iteration. He
claimed to reduce the complexity to O(N log N), but subseqﬁent work has shown
that Appel’s algorithm is asymptotically O(IN), although the difference may be of
purely academic interest for practical values of N.[11] The basic idea is captured
by the following example: when calculating the force of the Earth on an apple,
it is not necessary to compute the effect of each and every atom on one another.
To a very good approximation, we can take both the Earth and the apple to be
point masses located at their respective centers-of-mass, and analyze the system as
though it contains only two bodies. The details of how to make this approximation
uniformly throughout a system of interacting bodies is the subject of the various

hierarchical N-body methods that have recently received attention.
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In Appel’s terminology, bodies are collected into “clumps,” which in turn are
collected into larger clumps, and so on. The resulting data structure is a binary
tree. Of course, there are many binary trees that can be constructed from a
collection of bodies. A good tree will collect physically nearby bodies within the
same branch. Figure 1.1 illustrates how a region of space might be divided into
clumps which represent amorphous regions of space. Figure 1.2 shows the binary
tree equivalent to the hierarchy of clumps shown in Figure 1.1. Of course, even
given the constraint that clumps should correspond to compact regions of space,
there is still a great deal of freedom in the choice of hierarchy. Appel builds the
tree in two steps:

1. Build a “k-d tree” with the property that the bodies contained within the
two descendants of a given node are separated by a plane parallel to one of
the Cartesian axes, and have equal numbers of bodies. In other words, the
left child contains all bodies below the median coordinate, and the right child
contains all bodies above the median. The coordinate, i.e., x, y or z, alternates
at successive levels of the tree.

2. Refine the tree, so that the nearest external clump to any clump is its parent.
This is achieved with a local modification procedure that Appel calls a “grab.”
He points out the effectiveness of the “grab” procedure is difficult to analyze.
Once the tree is built, the acceleration of each clump is calculated by a re-

cursive descent of the tree. Each node of the tree, i.e., each clump, only stores
velocities and accelerations relative to its parent. The acceleration of a clump rela-
tive to its parent is due solely to the influence of its sibling. Thus, the acceleration
of all the nodes in the tree can be computed by applying the recursive procedure,
ComputeAccel, shown in Code 1.4, to the root of the tree.

So far, we have not made use of the approximation that well-separated clumps
can be computed by treating them as point-masses. The subroutine Interact,
shown in Code 1.5, uses an adjustable parameter, §, and makes the point-mass
approximation whenever the diameter of the larger of two clumps exceeds § times

the separation.



Figure 1.1. An example of Appel’s hierarchy of clumps.



Figure 1.2. A binary tree equivalent to the collection of clumps in Fig- |
ure 1.1.
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ComputeAccel (node)
ComputeAccel (RightChild(node))
ComputeAccel (LeftChild(node))
Interact (RightChild(node), LeftChild(node))

endfunc
Code 1.4. Appel’s algorithm for computing the acceleration of a node

in a tree.

Interact(A, B)
Larger = larger of A and B
Smaller = smaller of A and B

if( Diameter(Larger) > 6 * Separation(A, B) )
Interact (RightChild(Larger), Smaller);
Interact (LeftChild(Larger), Smaller);
else
Monopole(Larger, Smaller);

Code 1.5. Appel’s algorithm for computing the interaction between two
nodes in a clustering hierarchy. If the nodes are sufficiently well sepa-
rated, then a monopole approximation is used. Otherwise, the interac-

tions between their components are individually computed.

The parameter § may be freely varied between 0 and 1. When §é equals
zero, every pair of bodies interacts, in much the same way as in Code 1.2. For
fixed, non-zero values of §, Appel estimates the number of evaluations of the
subroutine Monopole to be O(N log N), but Esselink [11] has shown that Monopole
is actually executed only O(NN) times. Esselink’s arguments are rather involved.
The following simple discussion illustrates why Appel’s algorithm is O(N):

1. The nature of the recursion in Code 1.5 guarantees that clumps which inter-
act via Monopole, are approximately the same size. The reason is that the
recursive call to Interact always subdivides the larger of the two clumps. Its

two daughters are unlikely to be very different in size from one another, or



11

from the smaller sibling.

2. Consider a particular clump, C. The clumps with which it interacts via
Monopole are more distant than its size times §7!, and less distant than its
size times 26~1. If they were more distant than 26~?, then they would have
interacted with C’s parent.

Assuming these two premises are valid, we conclude that the volume available
for the clumps with which C interacts is limited to some fixed multiple of C’s
volume, while the clumps themselves are not smaller than some other fixed multiple
of C’s volume. Thus, there can be at most, O(1) such clumps, independent of N.
Since there are 2N — 1 clumps in a binary tree with N terminal nodes, and each is
an argument to Monopole only O(1) times, the total number of calls to Monopole
must be O(N).

Appel’s algorithm has not been widely adopted. Appel himself recognized
that the imposition of a hierarchical data structure on the physical system, and
its associated approximations, might lead to non-physical, hierarchical artifacts
in the final result. This would be highly undesirable in circumstances where the
purpose of the simulation is to study the evolution of some physical clustering
phenomenon, c.g., the growth of structure in the universe.[12] Furthermore, the
somewhat chaotic and tangled structure of the binary tree after the application
of the “grab” procedure makes the accuracy of the method difficult to analyze
precisely. Finally, the restriction to the very crude monopole approximation re-
quires a low value of §, and a large number of executions of Monopole in order to
achieve acceptable accuracy. It is possible, however, to adapt Greengard’s[13] or

Zhao’s[14] formalism for higher order multipoles into Appel’s framework.[15]

1.2.2. Barnes and Hut’s method

Barnes and Hut’s (BH) algorithm[16, 17] differs from Appel’s in several important
respects. First, the tree data structure is significantly different. Each internal cell
in the tree corresponds to a cube in physical space, and has up to eight immediate

descendants, corresponding to the eight smaller cubes obtained by splitting the
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larger one in half along each of the three coordinate axes. In Appel’s terminology,
each such cube represents one “clump,” with size given by the length of an edge.
We shall call these cubes “cells.” In addition, the tree structure is recomputed, ab
initio for each iteration; there is nothing analogous to the “grab” procedure.

The second important difference is that BH compute accelerations only for
bodies. The internal nodes of the tree are not dynamical objects that influence one
another. They are merely data structures used in the computation of the forces
on the bodies. In fact, it is possible to compute accelerations for arbitrary test |
bodies; even ones which are not included in the tree.

Finally, BH suggest, and Hernquist[18] elaborates upon the possibility of in-
cluding quadrupole and higher order terms in the force calculation.

An example of the tree used by BH is shown in Figure 1.3. For simplicity, we
shall usually render trees and other data structures as though we were considering
two-dimensional simulations. The generalization to three dimensions is obvious.
The figure makes clear the hierarchical nature of the structure, with each internal
“node” or “cell” having exactly four descendants, each of exactly half the linear
size of the parent. In three dimensions, of course, each cell has eight descendants.
The root of the BH tree corresponds to the entire computational volume, i.e.,
it encompasses all of the bodies in the N-body simulation. As we shall see, the
terminal nodes correspond to regions that contain one body. Thus, the BH tree
contains groupings of objects over the entire range of length-scales present in the
simulation. The tree is “adaptive” in the sense that it naturally extends to more
levels in regions with high particle density and short length-scales.

Figure 1.4 shows a flattened representation of the same tree as Figure 1.3. In
Figure 1.4 it is clear that the terminal nodes of the BH tree completely fill the
computational volume with cubical (square) cells whose linear size is an integer
power of ; times the full size of the volume. We shall use representations like
Figure 1.4 repeatedly. It should be borne in mind that Figure 1.4 is merely short-
hand for Figure 1.3. The internal nodes that are apparent in Figure 1.3 are always
- present. It is only the graphical representation of Figure 1.4 which obscures their
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presence.
The BH algorithm proceeds as follows:

1. Build a BH tree with the property that each terminal node has exactly zero
or one body within it.

2. Compute the mass and center-of-mass of each internal cell in the tree. Record
this information so that each internal cell may be treated in Code 1.6 as a
body with a mass and position.

3. For each body, traverse the tree, starting at the root, using the procedure in

Code 1.6.

ComputeField(body, cell)
if( cell is terminal )
Monopole(body, cell)
else if( Distance(cell, body) > 6 * Size(body))
for( each child of cell )
ComputeField(body, child)
endfor
else
Monopole(body, cell)
endif
endfunc

Code 1.6. Function ComputeField computes the interaction between
a specified body, and all bodies lying in a cell.

As we shall see in Chapter 4, when ComputeField is called for every body in the
tree, Monopole is executed O(N log N) times.
The BH algorithm can be generalized in several ways.

1. The tree can be constructed with a terminal-size parameter, m. Terminal
nodes are required to have m or fewer bodies. BH consider m = 1. We
consider the effect of m # 1 in Chapters 2 and 4.

9. The distribution of bodies within a cell can be modeled more accurately than
as a point mass at the center-of-mass. It is common practice to compute the

quadrupole moment and to replace the final call to Monopole in Code 1.6 with
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Figure 1.4. Flat representation of the same BH tree as in Figure 1.3.
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a function that computes both monopole and quadrupole interactions.[18, 17,
19, 20]

3. The form of the interaction need not be Newtonian gravity. In Chapters 3, 4
and 5, we consider the applicability of the BH algorithm to other forms of
interaction.

4. The form of the opening criterion, i.e., the predicate which determines whether
the multipole approximation will be used for a given body and cell, may be
modified. In addition to adjusting the parameter 6, one can contemplate
alternatives which are both faster and more accurate. This topic is considered
in Chapter 6.

5. It is possible to reformulate the algorithm to take advantage of “vector” su-
percomputers.[21, 22, 20]

6. The BH algorithm can be reformulated to take advantage of parallel computer
ha.rdware. This is discussed in Chapters 7 and 8.

1.2.3. Greengard’s method.

Another algorithm has been introduced by Greengard and Rokhlin.[13, 23, 24]
Greengard combines feature of Barnes’ as well as Appel’s formulation, and develops
an extensive formalism based on spherical harmonics. As in Appel’s method,
accelerations are computed between internal nodes of the tree, leading to an overall
time complexity of O(N). On the other hand, the cells in the hierarchy are cubes
which fill space completely, as in the BH method. Greengard has presented his
algorithm in a static, rather than an adaptive form. The hierarchy in Greengard'’s
method is a set of grids, each with twice as many cells in each direction as the
layer above it. The structure is shown in Figure 1.5. With a representation of
the data as in Figure 1.5, Greengard’s method is not adaptive. The finest level
of the hierarchy samples the system at the same level of detail, throughout the
computational volume.

Greengard’s method does not have a tunable parameter like 6 that controls the

descent of the tree or the number of interactions computed. In three dimensions,
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each cell interacts with 875 = 10% — 53 nearby cells at the same level of the tree.
Instead, Greengard controls errors by expanding the mass distribution in each
cell to a fixed number of multipoles. He makes an extremely strict accounting
of the errors introduced by approximating a distribution by a 2P-pole multipole

expansion, and concludes that the fractional error, €, is bounded by
e<27P (1.3)

Hence, he concludes that to obtain results accurate to within €, one should carry

out the expansion with

p > [—logze€]. (1.4)

Greengard develops an extensive formalism for manipulating coefficients of
spherical harmonics. The basic “interaction” in Greengard’s algorithm consists of
the translation of a multipole expansion from one center to another. For all but the
simplest situations (which corresponds to the Monopole clump-clump interactions
in Appel’s algorithm) this is an extremely complex operation, requiring evaluation
of high-order spherical harmonics and some p* floating point operations. Thus,
despite its extremely promising O(N) asymptotic behavior, the constant of pro-
portionality which relates time to N is very large. Greengard estimates that some
875p* N operations (some of them evaluations of high-order spherical harmonics)
are required to compute potentials for N bodies. Greengard does not discuss
the additional complexity needed to compute forces, except to remark that the

gradients of the spherical harmonics may be computed analytically.

1.2.4. An illustrative example.

We have now briefly reviewed three hierarchical N-body algorithms currently in
use. To illustrate the differences between these algorithms, consider how each
would calculate the gravitational effect of the Sun on the Earth. Specifically,
imagine that both the Earth and Sun are modelled as roughly spherical clouds

.each containing several thousand bodies. The geometry is shown in Figure 1.6.
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Sun

Figure 1.6. Earth-Sun system.
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Appel would consider both the Earth and Sun to be “clumps” located at their
respective centers-of-mass. The acceleration of all of the Earth bodies (neglecting

interactions between pairs of Earth bodies) would be the same, given by

GMaunxearth

|zzarth|

= — (1.5)
In particular, there would be no tides, which arise from the difference between the
Sun’s gravitational attraction on the daytime and nighttime sides of the Earth.

If tides are important, Appel would recommend decreasing é so that,
Diameter(Earth) > éSeparation(Earth, Sun), (1.6)

in which case the Earth would be subdivided into two or more sub-clumps before
the monopole approximation was made. This would also have the effect of re-
quiring subdivision of the Sun into many earth-sized clumps, each of which would
require its own monopole interaction. Of course, there is no guarantee that the
Earth would be split into the “correct” sub-clumps. They are as likely to be the
Northern and Southern Hemispheres as to be Night and Day. Thus, the only safe

procedure is to set
§ <« Diameter(Earth)/Separation(Earth, Sun). (1.7)

Such a small value of §, would, of course imply a very large number of executions
of Monopole.

Now consider the BH method. In this case, the Sun would be treated as
a point-mass at its center of mass. Each of the Earth bodies would be treated
separately, with the monopole approximation being evaluated separately for each
one. Tides raised by the Sun would be treated correctly because bodies on the
nighttime side of the Earth would feel less force due to their larger distance from
the center of the Sun. The correct behavior of solar tides is obtained with relatively

little effort.
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Finally consider Greengard’s method. Again the mass distribution of the Sun
is approximated, but now many terms (perhaps up to 21%-pole) in the multipole
expansion are retained. Of course, since the Sun is almost spherical, the magni-
tudes of most of the high-order terms would be very small. The field from the Sun
is “translated” to the center of the Earth resulting in a new multipole expansion
about the center of the Earth. The familiar solar tides arise from the contribution
of the Sun’s monopole term to the quadrupole term in the expansion about the
center of the Earth. If we consider only the monopole term from the sun, then

Greengard’s formalism tells us

GMum /— GM,un
¢(3tut) =T " y;) (0 ¢) + — I I IRearthl I,l (9 ¢)
(1.8)
GMaun 4
0 | Rearsn|? | = Y2(8,6) + -+,
Ixearthl 5

where Y;™ are the spherical harmonics, 6 is the angle between ﬁ,a,.th and Teqreh-
The azimuthal angle, ¢, happens to be irrelevant in this case. Greengard does
not compute explicit error bounds for the gradient of ¢, but we may compute it
analytically as:

—V§(Ttest) = —TL"zV (lRearthl Ylo(g ¢)>

Izearthl

+ —GL- V (IRemhl Yz (8, ¢))

Ixearthl

(1.9)

The first term in Eqn. 1.9, gives rise to the usual acceleration of all Earth parti-
cles uniformly toward the Sun, while the second gives the tidal variations, which

depend on the angle 6.

1.2.5. Other tree methods.

There are a number of other hierarchical N-body methods in the literature. In

this section, we provide a very brief overview of them.
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Jernigan and Porter[25, 26, 27] describe a method which treats the hierarchy
as a dynamical object, in which the velocity and acceleration of a node in the tree
is always with respect to its parent. They use a binary tree similar to Appel’s. In
order to improve on the accuracy of Appel’s method, they transform the equations
of motion for each pair of siblings into a “regularized” form.

Pépin, Chua, Leonard, and Winckelmans[15, 28] have described yet another
hierarchical method. The simulation of interacting “vortex particles” as mod-
els of fluid flow shares the same long-range difficulties as gravitational N-body
simulations. They use a binary tree, similar to that used by Appel, and a mul-
tipole expansion similar to Greengard’s two-dimensional formalism. Pépin has
shown that the method can be parallelized, achieving good efficiency on up to 32
processors.[15] This work specifically treats two-dimensional problems, for which
Greengard’s formalism is considerably simplified. In principle, three-dimensional
problems may be treated by adopting either Greengard’s or Zhao’s formalism for
translation of three-dimensional multipoles.

Zhao[14] has described an O(N) algorithm that is very similar in structure
to Greengard’s method. The difference lies in the representation of the multipole
expansion. Where Greengard uses a formalism based on spherical harmonics, Zhao
uses a formalism based on Taylor series and Cartesian coordinates. Otherwise, the
structure of the algorithms is identical. Zhao and Johnsson[29] have demonstrated
that the algorithm may be adapted for execution on the Connection Machine, a
SIMD system with 65536 single-bit processors and 2048 floating point units. Their
results are only for uniform distributions of bodies. They do not consider problems
of load balancing or implementation of adaptive hierarchies.

Katzenelson[30] presents a unified framework which encompasses both Green-
gard’s algorithm and a non-adaptive version of Barnes’ algorithm, as well as an
outline for implementation on the Connection Machine. He also does not con-
sider the problem of load balance or the need for adaptive structures when the
distribution of bodies in space is highly non-uniform.

Benz, Bowers, Cameron and Press[31, 32, 33] have proposed yet another
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method with similarities to Appel’s method and BH. As in Appel’s method, the
hierarchy is constructed as a binary tree. The construction is slightly different,
however, based on a technique for finding “mutual nearest neighbor” pairs. This
technique seems to eliminate some of the uncertainties associated with Appel’s
“grab” procedure. The force calculation now proceeds in a manner very similar to
the BH algorithm. The tree is traversed once for each body, applying an opening
criterion at each node which determines whether the quadrupole approximation
is adequate, or, conversely, whether the interaction must be computed with the
daughters of the node. The method requires O(N log N) executions of the basic
quadrupole interaction subroutine to compute forces on all bodies. Makino [20]
has found that the force evaluation is approximately as time-consuming as the
BH algorithm, for a given level of accuracy, but the construction of the tree takes

roughly ten times as long.

1.3. Categorization of tree methods.

Obviously, a large number of tree methods have been suggested, with diverse
scalings, data structures, mathematical foundations, etc. Nevertheless, many also
share features in common. Table 1.1 categorizes the different methods -according
to the following criteria:

Tree type: The methods use either binary trees or octrees. The octrees are
generally easier to construct, as they do not require searching for neighbors,
computing medians, etc. Since they do not impose any external rectangular
structure, the binary trees may introduce fewer artifacts into the simulation.
There is little evidence one way or the other.

Multipoles formalism: Methods make use of monopole, quadrupole or arbitrarily
high order multipoles. When high order methods are used, they are either
based on spherical harmonics or Taylor series expansions.

Adjustable opening criterion: Some methods have an adjustable parameter, e.g.,
6, which controls the opening of nodes in the tree during traversals.

Adaptive: A method is considered adaptive if the hierarchy extends to deeper
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levels in regions in which bodies are present with high spatial densities. In
general, those methods which are not adaptive can be made so by altering the
fundamental data structure from an “1-D array of 3-D arrays” to an octree.

Scaling: The methods are either O(Nlog N) or O(N). As log N grows so slowly
the difference between the asymptotic speeds for very large N may be of little
practical significance. For practical values of N, the “constants” are at least
as important as the functional form of the scaling.

Interaction type: Some of the methods compute interactions between nodes of
the hierarchy, while others only compute interactions between isolated bodies
and nodes of the hierarchy. All methods compute some interactions between
pairs of bodies. The methods which allow nodes to interact have a scaling
behavior of O(N), while those which have only body-node interactions scale
as O(NlogN). Generally, node-node interactions are extremely complex.
We distinguish between the different algorithms based on the most complex
type of interaction allowed, i.e., either body-body (B-B), body-node (B-N) or
node-node (N-N).

Table 1.1. Classification of tree methods according to criteria described in the

text.
Appel BH GR Zhao Pépin Benz JP
Binary/Oct-tree = B 0] O 0] B B B
Multipoles Mono Quad Sphr. Tayl. Sphr. Quad Mono
Adjustable OC Yes Yes No No Yes Yes Yes
Adaptive Yes Yes No No Yes Yes Yes
Scaling N NlogN N N N NlogN NlogN

Interactions B-B B-N N-N N-N N-N B-N B-N

1.4. Outline of dissertation.

The remainder of this dissertation will be concerned with various aspects of the
BH algorithm. We concentrate on the BH algorithm for several reasons:

1. It has received, by far, the most attention in the astrophysics community and
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will likely be the most reliable algorithm for use in “real” scientific simulations.

2. Joshua Barnes kindly provided a copy of his version of the code which was
written in the C programming language, facilitating portability to Caltech’s

parallel computers.

3. The firm distinction between the force calculation and the tree construction
phase makes effective parallelization much easier. Although by no means im-
possible to parallelize, Appel’s and Greengard’s algorithms require consider-
ably more bookkeeping because of the need to store and compute interactions
for non-terminal objects in their hierarchies. It is likely that load balance will

be considerably harder for either of these algorithms, in comparison to BH.

4. The asymptotic rates, O(NlogN) vs. O(N), do not tell the whole story.
Based on Greengard’s estimate of 1752V pair interactions per time-step[13]
(pg. 70-71), and our empirical observation that the BH algorithm with
6 = 0.8 requires approximately 15-35 N log, N pair interactions per timestep,
the asymptotic regime in which Greengard’s algorithm is expected to be su-
perior is near N =~ 10'®* — well beyond any planned simulations. It is worth
noting that the exact value of the crossover point depends exponentially on
the precise constants that precede the O(Nlog N) and O(N) factors. The
turnover point can be changed by many orders of magnitude by relatively

small adjustments in parameters or algorithms.

In Chapter 2, we investigate the statistical properties of the BH tree. We
present rigorous estimates for the average depth of the tree, the average number
of cells, etc. These results are not unexpected, but only heuristic arguments have
been presented before. In Chapter 3, we develop some of the mathematics of the
multipole expansions used in the BH algorithm. Multipole expansions, of course,
are not new, but the fact that the BH algorithm can be applied to non-Newtonian
potentials has not been generally recognized. In Chapter 4, we consider some
aspects of the algorithm itself. In particular, how much memory and time are

required to execute it. Again, the results are not unexpected, but it is reassuring
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to obtain rigorous estimates of the expected performance of the algorithm. Espe-
cially interesting is the fact that the performance is only weakly effected by highly
non-uniform distributions of bodies. In Chapter 5, we return to the multipole
expansion, and compute error bounds for various approximations. These error
bounds are useful for controlling the accuracy of simulations, and for choosing
a strategy for selectively using the multipole approximation. In Chapter 6, we
consider the issue of opening criteria, i.e., the question of when the multipole ap-
proximation may be used, in some detail. We discuss a serious flaw in the usual
procedure, and consider some alternatives that do not suffer from the same diffi-
culty. In Chapter 7, we address the issue of parallel computation. We find that
the BH algorithm can be formulated so that it may be executed on a parallel
computer. Adaptive load balancing, and a strategy for constructing only a small
fraction of the BH tree in each processor is necessary to efficiently use a large num-
ber of independent processors. In Chapter 8, we analyze the parallel algorithm
in some detail. A general framework for identifying the sources of inefficiency in
a parallel algorithm is described, and applied to the parallel BH algorithrfx. In
contrast to the majority of parallel scientific algorithms, the inefficiency in the
parallel BH algorithm is not related to interprocessor communication. Most of
the overhead is due to processor synchronization and redundant calculations. Ap-
pendix A contains detailed proofs of some assertions in Chapter 2. Appendix B
contains a reprint on the formation of galactic shells. Appendix C contains a
reprint on formation of galaxy halos in an expanding universe. Appendix D con-
tains a reprint on the relationship between the local mass density and the rotation
of halos arising in N-body simulations. Appendix E contains a reprint of a paper
on the statistics of QSO absorption line systems. Finally, Appendix F contains
a reprint of a paper on Cubix, a programming tool which was used for all of the

parallel programs described in this dissertation.
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2. Properties of the BH Tree.

In this chapter we investigate some statistical properties of the BH tree. Such
quantities as the average depth of the tree and the number of non-terminal nodes
will be important in the discussions of performance, so we begin by studying the

tree itself.

2.1. Building the tree.

We define a generalized BH tree by the following properties:
1. The cells partition space into an octree of cubical sub-cells, so that each cell
has eight descendants of equal size.
2. No terminal node of the tree contains more than m bodies. BH consider the

case, m = 1.

3. Any node of the tree which contains m or fewer bodies is a terminal node,

l.e., it is not further subdivided.

There are many ways to construct such a data structure from a list of bodies.
One method is to begin with an empty tree and to examine each body in turn,
modifying the tree as necessary to accommodate it. To add a body, it is necessary
to find the most refined element of the current tree which contains the body, and
then to add the body directly to that element, either by refining it further or by
simply inserting the body. Barnes describes a recursive procedure which performs
the above steps. In the following code fragments, we will encounter two distinct
data types:

Bodies: These contain a position, a mass, a velocity, and perhaps other physical
data which is carried by the bodies in the simulation.
Cells: These represent cubical volumes of space. Cells which are internal have

somewhat different storage requirements and properties from cells which are
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terminal.

Cells may be further subdivided into two types:

Internal Cells: These are the internal nodes of the BH tree. Each Cell contains
a set of multipoles which may be used to approximate the effect of all the
bodies which are descendants of the cell. In addition, a Cell contains pointers
to up to eight direct descendants.

Terminal Cells: These are the terminal nodes of the BH tree. As we shall see
in Chapter 4, if m is chosen correctly, then terminal cells need not store a
multipole expansion. They simply store the header for a linked list of bodies
and enough information to specify the size and location of the region of space

enclosed by the cell.

Insert(Body, Cell)
if( Cell is not terminal )
if( Cell has a Child which encloses Body )
Insert(Body, Child)
else
NewChild(Body, Cell)
endif
else if( Cell contains fewer than m bodies )
InsertDirectly(Body, Cell)
return;
else if( Cell contains exactly m bodies )
NewCell=a new, non-terminal cell with
eight empty children
for( oldbody = each body in Cell )
Insert(oldbody, NewCell)
endfor
Insert(Body, NewCell)
replace Cell with NewCell
endif

endfunc

Code 2.1. Procedure for inserting a new body into an existing BH tree.
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Figure 2.1. Snapshot of an m = 1 BH tree after eight bodies have been
inserted using Code 2.1.
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Figure 2.2. Snapshot of an m = 1 BH tree after 16 bodies have been

inserted using Code 2.1.
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Figure 2.3. Snapshot of an m = 1 BH tree after 24 bodies have been
inserted using Code 2.1.
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Figure 2.4. Snapshot of an m = 1 BH tree after 32 bodies have been
inserted using Code 2.1.
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The function Insert in Code 2.1 is essentially equivalent to Barnes’ method
of inserting a body into a cell. The function InsertDirectly, which is used by
Insert, simply adds a body to the list of bodies associated with a terminal cell.
The function NewChild, creates a new terminal node which contains only one Body,

and links it into the tree as a child of Cell.

Figures 2.1 through 2.4 show the evolution of a two-dimensional tree built ac-
cording to the method of Code 2.1. Notice that the sequence shown in these figures
would be very different had we inserted bodies in a different order. Nevertheless,

the tree that finally results from this procedure is unique.

Once the tree is in place, the centers-of-mass and multipole moments of each
of the internal nodes can be computed using a general form of the parallel axis
theorem. We will consider multipole moments and the parallel axis theorem in
some detail in Chapter 4. We now turn to the statistical properties of the tree

itself.

2.2. Notation.

We begin with a finite cubical volume, Vp, representing all of space, i.e., no body
falls outside of this volume, and an underlying probability density function 5(z).
Now consider a collection of N coordinates (or bodies), {z;,...,zx}, independent,
identically distributed random variables, with probability density 5(x). We are in-
terested in statistical properties of the BH tree constructed from these bodies. For
example, how deep is it, how many internal nodes does it contain, and how many
operations are entailed by an application of the BH force calculation algorithm,
on average?

We begin with some notation. We shall label cubical cells with a subscript ~.
Every possible cell is labeled by some « - those which are in the BH tree, as well
és those which are not.

Every cell, except the root, has a unique parent, which we denote by T (7)

In addition, every cell has an associated depth, d(v), which is the number of its
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ancestors. We note that all cells at the same depth have the same volume,
V, = Vo874, (2.1)

and there are 8¢ cells with depth equal to d. We define £, as the set of cells at

level d, i.e.,
Lq = {vld() = d}. (2:2)

For any cell, p, is the probability that a particular body lies within V.,
pr= [ Hap= (2:3)
Vy

The probability that V., will contain exactly : bodies is given by the binomial

distribution function,

By i(py) = (]:’ )p';(l -p)" (24)

We also define the cumulative binomial distribution and its complement,

CN,m(py) = ZBN.J'(P’r) (2.5)
j=0
and
N
DNm(Py)=1—-Cnm(py)= Y. Bn,i(py)- (2.6)
j=m+1

The functions, Cpn v and Dy, N are related to the incomplete beta function.[34]
For two disjoint volumes, 71 and -2, the probability that there are exactly 7; bodies

in V,, and exactly i2 bodies in V., is given by

NN i —iy—i
Brianopm) = (jy )Par = pn —pn)" 0 @)

122

We shall also use the limit

N
: — am+l
lim Dy,m(p) =P (m + 1)- (2.8)
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2.3. Expected number of internal cells.

The probability that a cell, 4, is an internal node of the BH tree is exactly the

probability that it contains more than m bodies, i.e.,
Prob(v is internal) = DN, m(p+)- (2.9)

Thus, the expected number of internal nodes in the tree is given by

Cavg = Z DN,m(p‘r)
i

[« <]
=>_ 2 Drvm(py) (2.10)
d=0~€L4
[o =]
=3 Grm(d),
d=0
where we have defined
GN’m(d) = Z DN,m(p'y)- (211)
YELy
As long as p is bounded, we have
Py < Pmaz%s-d(7)7 (212)

and hence, using Eqn. 2.8 and the fact that there are 8¢ cells in £g,

Jim Gnm(d) = o(8—™9). (2.13)

Therefore, the sum in Eqn. 2.10 clearly converges. In fact, it converges very

rapidly, and we will have no problems evaluating it numerically in Section 2.8.
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2.4. Probability that a cell is terminal.

Now we ask for the probability that a cell, V5, is terminal, and that it has exactly
a bodies, denoted by Prob(Pop(V,) = a). In order for a cell to be terminal, its

parent must be internal. Thus,

Prob(Pop(vy) = a)
= Prob( V4 contains a bodies AND V;., contains > m bodies)
= Prob(V., contains a bodies)
— Prob(V., contains a bodies AND V1., contains < m bodies)

= Prob(V., contains a bodies)

m—a
- z Prob(V., contains a bodies AND (V1 — V,) contains j bodies).
Jj=0
(2.14)

We can now use the binomial distribution functions defined in Eqn. 2.7 to obtain

m—a

Prob(Pop(v) = a) = BNn,a(p+) — Z BN,a,i(Pv,P1v — P+)- (2.15)

7=0

The probability that a cell is terminal, regardless of how many bodies it

contains, is clearly a summation over Eqn. 2.15,

m m-—a
Prob(V,is terminal) = Z (BN,a(p-,) - E BN,a,i(P~:P1y — P-r))

a=0 j=0
(2.16)
= CN,m(py) — Z Z BnN,a,i(Py, Pty — Pv)-
a=0 j=0

Now observe that

Z z“:" = ZZ where s=a+J, (2.17)
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and also, by the binomial theorem

Z BN,G,S—a(p‘y,pT'y - p‘f) = BN,J(pT'f)' (2.18)

a=0

From Eqns. 2.16, 2.17, and 2.18, we obtain

Prob(Vsis terminal) = CN,m(Py) = D O BN,a,0-a(Px: Py — 1)

8=0a=0
= CNm(Py) = O BN,s(P1+) (2.19)
= CN,m(P‘r) - CN,m(PT'r)
= DN,m(Pty) — DN,m(py)-

2.5. Expected number of terminal cells.

We now estimate the expected number of terminal cells, Tavg in a BH tree with

N bodies as

Tovg = Z Prob(Vis terminal)
v

oo
= Z Z Prob(V,is terminal)
d=0v€Lq4

(> =]

=" Y (DN.m(Pry) = Dn,m(py)
d=0~€Lq (2.20)

= Z SGN,m(d - 1) - GN,m(d)
d=1

=7 Z GN,m(d)
d=0

= 7Cavg.

Thus, the expected number of terminal cells is exactly seven times the expected

number of internal cells. This is not a surprising result. In general, if an octree has
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Ni¢erm terminal nodes, then we can expect approximately Nierm /8 nodes which
are parents of terminal nodes, Nierm /64 nodes which are grandparents, etc. The
total number of nodes will be the geometric sum,

Nterm - Ntcrm Nterm

e R a b (2.21)

Equation 2.20 verifies that the loose reasoning of Eqn. 2.21 is indeed exactly correct
when treating expectations of cell populations. We note that the sums in this
section include terminal nodes with zero bodies. In practice, such empty terminal

nodes will not require storage space, so the results are not of great significance.

2.6. Expected population of terminal cells.

The expected population of V., is also a summation over Eqn. 2.15,

< Pop(V,) >= i aProb(Pop(Vy) = a). (2.22)

a=1

Note that we are considering the population of a cell to be zero if it is non-terminal.

We now make use of the following identities:

aBN,o(p) = NpBN-1,a-1(P) (2.23)
aBN,q,i(P,9) = NpBN-1,0-1,;(P; 9)- (2.24)

Thus,

m m-—a
< Pop(V,) >=Npy Y (BN-—I,a—l(p‘Y) =Y Bn-1,a-1,j(Py, P14 = P‘v))

a=1 =0

a=0 ;=0

m-—1m-—1-—a
= Np, (CN—I,m-l(p‘r) -3 Y Br-14,i(PrP1y —p-,)) -

(2.25)
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Again, using Eqns. 2.17 and 2.18, we obtain

m-—1 s
< POP(V»,) > = Np-y (CN—I,m—l(P'y) - z ZBN-I,a,a—a(p’in’f —P7)>

8=0 a=0

m-—1
= Np, (CN-I,m—l(P'y) - Z BN—L;(PH))

#=0
= Npy (CN-1,m-1(Py) = CN-1,m-1(P1+))
= Npy (DN-1,m-1(Pty) = DN-1,m-1(P+)) -
(2.26)
This result tells us the expectation value of the number of “terminal bodies” in a
cell whose integrated probability is p, and whose parent’s integrated probability
is pt4. For very large p,, the expectation is small because it is very unlikely that
~ the cell is terminal. For very small p,, the expectation is also small because it is
unlikely that any bodies fall in the cell at all.
We can quantify these observations if we assume that N is very large, and
that p, is very small, but that Np, = A,. Under these conditions, the binomial

distribution goes over to the Poisson distribution,

,\i
Bn,i(py) = Pi(Ay) = i—?e"‘“’. (2.27)

Furthermore, we assume that j(z) is almost constant over the volume Vv, in

which case

Pty = 8py. (2.28)

Under these conditions, Eqn. 2.26 becomes

m-—1

< Pop(Vy) >= Ay Y (Pi(Ay) — Pi(8),)). (2.29)

=0

Figure 2.5 shows a plot of < Pop(V,) > as a function of ), for m ranging
from 1 through 5. The maximum of the expected population is approximately
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proportional to m. This is because m is the maximum number of bodies that can
reside in a terminal cell. As m increases, we expect proportionally more bodies
in terminal cells. Furthermore, the value of A, which gives rise to the maximum
expected population is also approximately equal to m. The reason is that for
significantly higher A, cells are likely not to be terminal, while for significantly
smaller \,, cells are likely to have low populations, or not to have parents which
are internal cells. Figure 2.6 shows the same data as Figure 2.5, but with the axes
rescaled to reflect the fact that the heights and widths of the curves in Figure 2.5
are approximately proportional to m. |
From Figure 2.6, we see that the expected number of terminal bodies in a cell
peaks when ), is slightly less than m. Furthermore, even for “resonant” values
of A, close to the peak, the expected population of V. is slightly less than about
m/2. Thus we conclude that in a BH tree with a maximum of m bodies per node,
we can expect, on average, slightly fewer than m/2 bodies in the terminal nodes.
This should not be a surprising result. Consider the fact that the probability that
a given node, not necessarily terminal, with A, = m has m bodies is not too much
different from the probability that it has m+1. In the latter case, it will likely give
rise to eight smaller terminal cells, with an average population of only (m + 1)/8.
Thus, almost-empty. terminal cells are about as likely as almost-full terminal cells,

and it isn’t surprising that the average population of terminal cells is near to m/2.

2.7. Average depth of bodies.

Now we can ask for the expected population of all cells with depth equal to d.
Clearly, this is just a sum over all appropriate 7 of Eqn. 2.26,

< Pop(depth = d) >= Z Np,(DN-1,m-1(P1v) — Dn-1,m-1(P+))- (2.30)
YEL4

Equation 2.30 may be simplified by noting that

Pa= Y Py (2.31)

¥31(7)=«
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Figure 2.5. The expected value of the number of bodies in a cell with
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Figure 2.6. The expected value of the number of bodies in a cell with
Np, = Ay, with both the ordinate and abcissa scaled by m.
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i.e., for a given cell, the sum of the probabilites of its children is equal to its own

probability. Thus,

< Pop(depth =d) >= N Z PvDN-1,m-1(Py) — Z PvDN-1,m-1(P~y)
YEL4-1 YEL4

= N(FN-1,m-1(d — 1) = FN_1,m-1(d)),
(2.32)

where we define

Fnm(d) = Y pDN,m(py). (2:33)
~YEL4

We can check our calculation by computing the sum of the expected popula-
tion, over all values of d,

(> <}
< Total population > = Z < Pop(depth = d) >
d=0

=N <Z (FN-I,m—l(d -1)- FN—I,m—l(d)))

d=1

D
=N lim (Z (FN-1,m-1(d—1) - FN—I,m—l(d)))
d=1

D—oo
= NDIEIIOO (FN-1,m-1(0) = FN_1,m-1(D))

=N (1 - DlgnwFN-l,m—l(D))

= N.
(2.34)
The last identity follows from the fact that

Frnm(d) =0(8™™) (2.35)

by the same argument as led to Eqn. 2.13.
The total population is exactly as it should be. By a very roundabout method,
we have determined that the expected number of bodies in a BH tree constructed

from N bodies is precisely N.
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The average depth of a body in a BH tree may also be obtained from Eqn. 2.31,

oo
Davg = 75 3 d < Pop(depth = d) >
=0

D
= Dhlglooz d(FN-1,m-1 (d- 1) - FN-—I,m—l(d)))

=1

D-1
= Dli_fgo(z Fn-1,m-1(d) = DFN-1,m-1(D)) (2.36)
d=0

= Z Fn-1,m-1(d)

d=0

= Z PyDN-1,m-1 (P'r)-
~

The value of Fiv,m(d) depends on the details of the probability distribution, p. We
cannot make further progress analyzing the average depth of the BH tree, or the

average number of cells it contains, unless we make assumptions about p.

2.8. Uniform distribution, i.e., p(x) = const.

If the distribution of bodies, p(z), is constant, we can explicitly evaluate F, m(d)
and GN,m(d) and then numerically evaluate C,vy and Dayg. The results are in-
teresting in their own right, as approximately uniform distributions of bodies are
used to describe the early universe in cosmological simulations. More importantly,
we can extrapolate the results for a uniform distribution to situations with a non-
uniform distribution, but a sufficiently large value of N.

We now consider the situation in which p is a uniform distribution, i.e., a body
is equally likely to appear anywhere in the volume, V. Since p(z) is a probability

density, we have

o) =7 (237)

py =874, (2.38)
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and there are exactly 8¢ cells with depth d. Equation 2.11 becomes
GN,m(d) = 84(DN,m(87%), (2.39)

and Eqn. 2.33 becomes
Fn,m(d) = Dn,m(879%). (2.40)

Now we use Eqns. 2.10 and 2.36 and obtain

oo

d=0
and
oo
Davg = Z DN—I’m—l(S—d)- (2-42)
d=0

| We can verify that they are well defined if we make use of the limit, Eqn. 2.8.
In fact, Eqn. 2.8 tells us that the sums converge very rapidly and can eaily be
evaluated numerically given values N and m.

Figure 2.7 shows Cyyy computed according to Eqns. 2.41 and 2.10. Based on

the figure one is tempted to conjecture that

Nem

Cavg < for all N. (2.43)

A plot of m—%—"'- is shown in Figure 2.8, in which the abscissa is remarkably constant
over a large range in N.

Figure 2.9 shows D,,, computed according to Eqns. 2.42. Again, the figure
suggests a very tight bound,

dmN

Dgyy < logg for all N, 2.44
9

which is substantiated in Figure 2.10 by a plot of -’ﬁSD"' vs. N. Prov-

ing these conjectures is rather involved, and is the subject of Appendix A.
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We show values for c¢m and d,, for several values of m in Table 2.1.

Table 2.1. Values of ¢, and dm as defined in Equations 2.43 and 2.44.

m Cm dm
1 0.50 5.2
2 0.52 4.1
3 0.55 4.0
4 0.58 4.1
5 0.63 4.2

20 0.78 5.2
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2.9. Non-uniform distribution, i.e., p(z) # const.

Now we return to distributions of bodies that are not constant. We can no longer
explicitly evaluate quantities like Fn m(d) and Gn,m(d), so our conclusions can-
not be as specific as in the previous section. However, we will find that if N is
reasonably large, then the bounds of previous section apply with minor modifica-
tions, even if p(z) is not constant. The exact condition on the magnitude of N is
simply a precise statement of the idea that N must be large enough so that a col-
lection of N samples drawn from the distribution, p(z), is sufficient to accurately
reconstruct the distribution, p(z). This condition is always satisfied by practical

N-body simulations.

2.9.1. Large N.

We start with the assumption that p is well-behaved, i.e., bounded with bounded
- derivatives, etc., everywhere in the region V. Then, to any desired level of accu-
racy, we can find a set of disjoint cells that partition Vy such that p is approximately

constant over each cell. Call this set S. We can precisely characterize S by

ZP‘V =1,

v€S (2.45)

Vv €S: p(z) is approximately constant over V..

We designate by |S| the number of elements in S.

Now, we compute the expected number of bodies in each member of S ,
N, = Np,. (2.46)
The condition we need for the results of this section is that
Nis»1 qes. (2.47)

That is, in every region over which 5 is approximately constant, we can expect a
substantial number of bodies. The purpose of the one-half power in Eqn. 2.47 is
so that the number of bodies that actually fall within each ¥ € S will be a good



52

estimate of N,. In the following, we will neglect all terms smaller than N+ ¥ we
shall refer to a distribution p which satisfies these conditions as “measurable with
N samples.” If § is measurable, then it can be accurately reconstructed from a
statistical realization with N samples, simply by approximating;:

N,

ﬁ(:c) ~ m for z € V-y. (248)

2.9.2. Bounds on Cgyg-.
It is well known that the binomial distribution, By,i(p), has mean value, Np, and

variance Np(1 — p). Thus, in each cell in the set S, we can expect to find
1
Npy & (Npy(1=pp))t = Ny (1£(1 - p)}NT?) (2.49)

bodies. Based on Eqn. 2.47, we can neglect the last term in Eqn. 2.49 and conclude
that there will be almost exactly N, bodies in each of the elements of S. We can
now treat each of the cells, ¥ € S, as a separate and independent BH tree. By
construction, these cells have constant p, and a specified number of bodies. We

can now simply calculate the number of bodies in the entire BH tree,
Caug(N) = D Cavg(N+)
v€S (2.50)
+ # cells resulting from assembly of the elements of S.

The elements of S are disjoint and cover all of V,, taken together, they form
the terminal nodes of an octree (quadtree in two dimensions). The number of
additional nodes which constitute their ancestors in the entire BH tree must be

less than Jél Thus, we have

|51

Cavg(N) = = + D" Cavg(N)- (2.51)
YES
From Eqn. 2.43, we have
|S| cmN.
Caug(N) < = + > -, (2.52)

YES
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and, since the elements of S are a disjoint partition of Vj, we have

Cavg(N) < + 2l (2.53)

7

emN S|
m

2.9.3. Bounds on Dgyg.

We now turn to the average depth of bodies when the probability density is not

constant. Again, we express Day(/V) in terms of a sum over the elements of S,

Dauy(N) = 5 3 Ny(Davg(N,) + depth()). (2.54)
YES

First, we note that the depth of a cell, 4, may be expressed in terms of the

logarithm of its volume,

depth(y) = —log, %. (2.55)

We can make use of Eqn. 2.44, and Eqn. 2.54 becomes

Davy(N) < %Z N, (logs (d'"N’) - logs(%’)) : (2.56)

m
YES

Now, we recall that

N, = Np,, (2.57)
so Eqn. 2.56 becomes
dm N Ve
Dayg(N) < logg ( g ) + Y pylogg (p-q,ﬂ) : (2.58)
YES v

The sum in Eqn. 2.58 has some interesting properties. First, we note that it may
be approximated by an integral over the volume V,. Since p is approximately

constant over each V., we have

Py = p(z4) V5. (2.59)
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We define the quantity, H, as the sum in Eqn. 2.58, and in light of Eqn. 2.59, we

have
Vi _
H= Y pyloss (prot) = [ e)loss (oo 2, (260
~€S y Vo
and
dm
Dg,yy(N) < logg ( mN) + H. (2.61)

The integral in Eqn. 2.60 is similar to the “entropy” of the probability distri-
bution, p. Thus, we might expect that it has a minimum when p is constant. This
is indeed the case. One can easily show, using the method of Lagrange multipliers

that H has an extremum when
V.

= =V, 2.62
o =" (2.62)

in which case, we trivially have
H =0. (2.63)

Furthermore, the matrix of second-derivatives of H, i.e., its Hessian, is positive

definite when Eqn. 2.62 is satisfied. Thus, we conclude that
H >0, (2.64)

and equality only holds if Eqn. 2.62 is satisfied.

In practice, H is usually a fairly small constant. For example, the Jaffe
model[35] cut off at R = Arg, which is used as a benchmark in Chapter 8 and
which is used for the initial configurations in Appendix C, has a density profile of

A+l 1 ra : .
f)(r) = A 41rrg ré(r+rg)?? ifr< AT‘o,
, otherwise.

It is a simple exercise to compute the “entropy,”

44 3A
Hjagse = (

< ) logg(1 + A) — logg (3€2). | (2.65)
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For large A, H grows only logarithmically with A,
i A3
Allfr;o Hjosse =logg (3?) , (2.66)

while for small A, Hj.sf. approaches a constant,

2
Alim Hja55e = logg (%) ~ 0.43. (2.67)

The benchmarks in Chapter 8 were run with A = 10. The corresponding value of
H is
Hja55.(A =10) =~ 2.43. (2.68)

Clearly, the magnitude of H is not very large.
For practical values of N, in the range 10*~10%, H is considerably smaller than
logg(dm N/m), so the correction due to the non-uniformity of the distribution does

not greatly affect the average depth of the tree.
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3. Multipole Expansions.

In this section, we treat some of the mathematical issues that arise in the applica-
tion of clustering techniques to potential problems. The analysis will proceed in
several steps. First, we will develop a multipole expansion for a very general class
of potential problems. Then we will specialize these results for particular forms of
the potential, proceeding from completely general to spherically symmetric, to a
softened Newtonian potential, to a strictly Newtonian potential. As we shall see,
the strictly Newtonian potential has some important mathematical features which

simplify both the mathematical analysis as well as the computational problem.

3.1. The multipole expansion.

The computational N-body problem is usually an approximation to a continuous
physical system or a discrete physical system with a very much larger number of
degrees of freedom (simulations of globular clusters are a notable exception). In a
large elliptical galaxy, there may be 10! stars, sufficiently many that the densities
and distributions of stars may be treated as a continuum. In the continuum limit,
the problem is described by a Green’s function, G(r), a density field, p(v), and a
potential, ¢(7), related by

8(r) = /v G(F = 7)o(F)dr, (3.)

where V is the volume over which the density is known to be non-zero. The density
and Green’s function are considered “inputs” and the potential, or perhaps its

gradient,
-V, (3.2)

a

are the desired “output.”
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First, we note that the expression for ¢ in terms of p is linear in p. If we

partition space into disjoint regions, V. such that

V=V, (3.3)

Then
B(r) =D p(r), (3.4)

é.(r) = /v G(F = )p(2)dz. (3.5)

3.2. General case: arbitrary Green’s function.
Now let’s choose a point, 7, which is not necessarily inside V., and do a Taylor
series expansion of G(7 — T),
G(F—2)=G((T—7y) — (T - 1Y)
=G|;-'_,-',1 - (:L' - T-Y)ia.‘G|;_.;-;'
1 . . 3.6
+ 5(@ = 1)/(z = 7)1 8:8,Gle-s, oo
1 . . '

= 5@ =)@ = r)i(z = 1) 00Ok Glor, + -

Inserting this expression into the integral in Eqn. 3.5, the dependence of the inte-

grand on the value of r can be factored out, and we have the following,

¢1(7') = 7(0)G|1"-F-, - M.i,(l)aiclo'-‘-?.,

1, j 1. pijk (3.7)
The gradient of the potential, ai, is given by
avi(r) = = My(0)0iGlr-=, + Mf;(l)aialer-f,
- lMJ'k 8:0;0:Gs_=
2 ~(2)YiY5 Y% IF—r.., (38)
1. ikl
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where

Miggh = [ Eale—rier)t e (09)

are the multipole moments of the mass distribution in V,. In the following, we

will need to refer to the individual terms of the expansion, separately. Thus,

1)
P(n) “( ) M-y(n) 8i; - 0i, Gle-, (3.10)

(_1)n+1
n. (n)

" iy -+ 01, Glr—r, (3.11)

Ay(n)io =

and Eqns. 3.7 and 3.8 can be written succinctly as

Sy(r) =D bx(m)(7), (3.12)
dy(r) = 2 () (). (3.13)

If the multipole moments are known, then Eqns. 3.12 and 3.13 tell us how
to evaluate the potential ¢(r) and its gradient at any point, r, (assuming that
the Taylor series converges). We have characterized the continuous distribution of
mass p(r) inside V., by a countable set of multipole tensors, M, (n). If we have the
M) in hand, then in order to evaluate the potential ¢.(r), we need only evaluate
G and its derivatives with one argument, © — 7, and perform some summations
over indices. In many cases, this is vastly simpler than integrating G over the

volume, V,.

3.3. Spherically symmetric Green’s function.

Although it is useful to have a completely general formulation of the method,
in practice, Green’s functions often obey special properties which make both the
algorithm and the associated analysis much simpler. We begin our process of

specialization by investigating spherically symmetric Green’s functions.
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If the Green’s function is rotationally invariant, we can write it as

G(7) = g(If1) = f(r*/2), (3.14)
from which follow its derivatives:

8:G =f'(r/2)ri,
8:8;G =f"(r*/2)rir; + f'(r?/2)6ij,
0:0;0kG =f"'(r* |2)rirjri + f"(r?/2)(ri6;k + 2permutations),
8i0;0k01G =f"" (r2 |2)rirjriry + f"(r? /2)(rirjéx1 + Sperm.),
+ f"(r? /2)(6ij6x1 + 2perm.), (8:15)
8:0;0kB1BmG =" (r2 [2)rirririrm + F™ (2 /2)(rirrk6im + Operm.),

+ f"(r* /2)(ribjk6im + 14perm.),

If we define the “normalized” nt* derivative,

’.2n dn

g(n)(r) = g(T) pr f(z)|z=r’/2, (3'16)

then the derivatives of G may be written explicitly in terms of inverse powers of

|~ — 75| and the unit-vector pointing in the direction of 7 — 7.,. First, we define,

Q,
I}
=
|
2t

(3.17)

i

|

<
4‘

(1.}
n

. (3.18)
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In terms of d and €, we have
Biy ... 8, Glrs, =2 (d) L2 (4™ (d)es, . ..
+ gV (d) (65, iz i€ - - - €in ++ ¢ (g) permutations)

1 .
+ gD (d)(8iyi, 6igisCis - - - Cin + o1 (2n2) permutations)

+ .- )
(3.19)
Alternatively, we can write Eqn. 3.19 as
8 ... 8, Glror, = -"(d) Z ¢"~™(d) (3.20)

m=0

n!
X 6‘1"2 T 6i2m-1i2mei2m+l Tt ein + Tt 2m(n _ 2m)gm'

permuta,tions) .

In order to insert Eqn. 3.20 into Eqns. 3.7 and 3.8, we introduce the following

notation for the trace of the multipole tensor M,(,) With ! remaining indices,

M,(’?':;" = birgrirgs * Ginorin Mu(::) e, (3.21)

and the following for the contraction of MY (n) with the “m!*” power of the unit-

vector, €,

l il"'il-m 1
<M( (n) |e(m)> M((),:; ll_m+1 cec €4y (3-22)

Note that under rotations, <M_(Yl()n) ‘e(’)> transforms as a scalar and <M ,(7'()“) |e("1)>

transforms as a vector.
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With this notation, Eqns. 3.7 and 3.8 become

Do(n)(T) =(——%( <M-(,?3z) le(")> g™(d)

+ (g) <M(n 2)Ie(n-2)> g(n—l)(d)

1 n n— n— n—
+5 (2 2) <M( e 4>> g™=2(d) (3.23)

1 n n - n—
PE! (2 ; 2) <M-(,(n O e(n s)) g"=3(d)
)

and
- -1 n+1 d n n n R
a,’(n)(,-) =%%)°(<M( ) |e( )> ( +1)(d)e
+ ng™(d) (ML |e™V)
+ (5) (ttsPlec) s
+( ) g (d) (MDY (3.24)
21 '

1 — n— “
+ 31() (MG01e=0) gD

1 n
= (n=2) (n—4)| _(n-5)
ta (2 2 1)9 ") <Mv(n> le >

+)

Or, following Eqn. 3.20,

m<n/2
- (—l)ng(d) N\ n! (n=2m)|_(n-2m n—-m
Py(n) = drn! Zo m!2m(n — 2m)! <M‘7(n) Ie( 2 )> g( )(d) (3.25)
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and
m<n/2
. (=1)"*1g(d) n!
Gr(n) = T gnt 1] mz;o m!2m(n — 2m)! (3.26)
(n—2m) n—-2m n+l=—m ~
(M letnsm) g 1=m (ae

+ (n _ 2m) <M£’?n—)2m)|e(n—2m—l)> g(n-m)(d)).

3.4. A softened Newtonian potential.

We are now ready to consider a particular functional form for the Green’s function.
Often, astrophysical N-body simulations use a non-Newtonian potential which
lacks the singularity at the origin, and makes time integration of the N-body

equations considerably easier. The “Plummer” model is frequently used:
= —= 27
o(r) = — 3, (3:27)

R=(r* + &)Y (3.28)

This Green’s function behaves like Newtonian gravity for separations much
greater than ¢, but for small separations, the potential is not allowed to go to
infinity. In physical terms, it is the potential energy around a “Plummer” sphere,
i.e., a density distribution of the form,

3 €2

Pplummer(r) = 476_‘2_*_7)5/2 (329)

It is a useful modification of the true potential because it eliminates the singu-
larity at the origin, and limits the maximum potential energy, and hence orbital
frequency, of a pair of bodies.

In the notation of Eqn. 3.15,
f(z) = —(2z + €2)71/2, (3.30)
The derivatives of this particular f(z) are easy to evaluate by induction,

FO(z) = =(2n = 1)I(=1)"(2z +€2)~@r+D/2 = _(2n —1)I)(—1)"R-C"+D) (3.31)
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o™)(r) = (20— (-1 (£) " (3:32)

We also define the “softened unit-vector”, 71‘,

Ree(l)e —T
h=e(§)—(r2+62)1/2. (3.33)

Inserting Eqn. 3.32 into Eqns. 3.25 and 3.26, we immediately have

. m<n/2
b = 2D S
v(m) Rr = m!2™(n — 2m)!

(=1)™(2n — 2m — 1) ( M=) (330)

v¥(n)

m<n/2

9(d) ) (=)™(2n — 2m - 1!
m=0

Ey(m() ~ RnH m!2™(n — 2m)!

(3.35)

x ((2n -2m+1) <M_§?;)2m)|h("'2"‘)> h

— (n —2m) (M [hn-2m=D))

v(n)

For reference, the summations and combinatoric factors are presented for the first

few values of n:

$0) = —R™ Mg,

$a)=—-R* <M-(18>|h(l)> ;

$(2) = —R'a';' (3 <M~(/2)|h(2)> - <M§3)|h(o)>) ’
b@3) = —R_4% (15 <M-(y?;)|h(3)> -9 <M-(78)|h(1)>) )

) = —R°5% (105 (L8], |n9) — 90 (M [1®) + 9 (M) (1)) ,
(3.36)
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d(oyi = —R™2Mg)h,

Gy = —B(3 (M) RO )E - (M) |n@)),

G2y = —R"“%(15< O IRV E - 6 (M) [rD)
— 3 (M, [r®)R),

dayi = -3-5%(105 (MR VE - 45 (M, |h®) (3.37)
— 45 (M KDY R+ 9 (MG @) ),

duyi=—R° 214 (945 (ML) [} F — 420 M R

-0 (a2, ) . 150 (1 )
+45 (M, K@) F).

Equations 3.36 and 3.37 are implemented directly in the PairInteraction
phase of the BH algorithm. It is worth noting that these equations are slightly
different from those used by Hernquist,[18] who, apparently, failed to account for
the terms involving the trace of the various multipoles. This almost certainly
explains his results which indicate a failure of the second order correction for

separations approaching e.

3.5. Pure Newtonian potential.

Now let us take € = 0. Thus, we have finally specialized to the case of pure New-
tonian gravity. The Green’s function now has the follcwing important property,

away from the origin

VG =0; F#0. (3.38)

In component notation,

§99,0;G(r)=0; T#0. (3.39)
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Since derivatives may be taken in any order, we immediately have
§«09; 8;,---0;,G(r) =0; F#0; a,Bf<n. (3.40)

This allows us to add arbitrary multiples of the Kronecker-delta to any of the
multipoles, without changing the value of ¢(,) or @(n), computed according to
Eqns. 3.10 and 3.11. That is, if we define

Qizin = Mz = (64C{3;™ + permutations), (3.41)

where C(,,) is any fully symmetric rank n — 2 tensor whatsoever, then

(-1)"

$(n) = Q(,.) 8, -+ i, Glr-,, (3.42)

-1 n+1
A(n)ip = ( ) Q&) in 0i, -+ 0, G],--'.r,7 . (3.43)

In particular, we may choose C(,) so that Q) is completely trace-free, on any
pair of indices. We shall refer to the tensor, Q(,), that results from such a choice
of C(n) as the “reduced multipole tensor.” Since M(y) is symmetric under inter-
change of indices, and Eqn. 3.41 is manifestly symmetric by construction, Q(n) is
a completely trace-free symmetric tensor of rank n. C(y is readily evaluated in
terms of M(,) by simply taking traces of both sides of Eqn. 3.41. We show the
results of this procedure for C(3) through Cis):

1.0
Cay =3M 02

1. ()i
0(13) =5M‘1(3)’

cd —-(M(”'J — = M9) 69), (3.44)

¥#) ~ 70

k 1 .
("5’;‘ ( ,(1‘2')’ (M ,5(;; 67 + 2 permutations))),

. 1 :
C('é;d (M-(,g;;lkl - ﬁ((Mf,?é')’ T M (?2)5" )6*! + 5 permutations)).
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The reduced multipole moments are extremely useful, since they make it much
easier to evaluate ¢(n) and a(n). First we replace M(n) with Q(n) in Eqns. 3.10
and 3.11. Equations 3.25 and 3.26 follow just as they did before, only with M
replaced by Q. But we know that the trace of Q, on any pair of indices, vanishes

by explicit construction. In other words,

QY y=0; l<n. (3.45)

7(n

This means that all but the leading terms in Eqns. 3.25 and 3.26 vanish, and we

have

bm(r) = ELID (G |e™) g(a), (3.46)

Gy(n)(r) = M( <Q-,(,,)le(")> g™t (d)é + ng(™(d) <Q7(n) le(n—1)> )

dntln!
(3.47)
Using the explicit eﬁcpressions for the ¢(™, we have
2n-1)1" 1 n
¢’l(ﬂ)(r) == n! dn+1 <Q7(n)|e( )> ) (3.48)
~ Cn-1! 1 a\ . o
Ayn)(r) = =7 =52 ((2n +1) <Q.,(n)]e( ’> é—n <Q7(n)’e( 1)>) .
(3.49)

Recall from Eqns. 3.17 and 3.18 that the vector, €, is a unit-vector, and points in

the direction of the vector, ¥ — 7, and that d is the magnitude of ¥ —r7,.

Equations 3.48 and 3.49 give an explicit form for the multipole approximation
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for a Newtonian potential. We tabulate the first few cases for reference:
$0) = —R™ Mg,

$a) = —R~ <Q‘1(1)|e(1)> :

b0 =273 ((@ale®))
b= ~F~3 ((@un <)) (3.50)
b= =R F ((@xwle®)),
=52 ((0,01)).
o= ~E 5 ((@u0l<®))
Goyi = —R™2Mg)é,
Gy = =B7(3 Qe [e® ))é = (Quin @),
di = ~R5 (5 {Qupe®) £ = 2(Qup|e®) ),
G = ~R2 (1{ Qe ) 6= 3(Que®)) (3.51)

duyi =—-R~° 385 ( <Q'7(4)|e(4)> e—4 <Q.,(4)|e(3)> )’
o= (13 (001e) -5 (@r0f89)),

T = =R 35 (13(Qreole ) =6 Qo))

We shall discuss methods of evaluating these expressions in Chapter 4.
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4. Practical Aspects of the Barnes-Hut Algorithm.

We are now ready to analyze the Barnes-Hut algorithm in some detail. In this
chapter, we attempt to bridge the gap between the the data structures and math-
ematics of Chapters 2 and 3 and the BH algorithm, as implemented on a serial

computer. Issues that arise from parallel computers will be deferred until Chap- |
ter 7. Of particular interest are methods for computing the multipole moments of a
system, the amount of storage space required to store the components, the number
of operations necessary to compute the multipoles themselves and to compute the
multipole approximations derived in Chapter 3. The BH algorithm is described
in Chapter 1, and a method for constructing a BH tree is described in Chapter 2.

Here, we discuss the form of the data in the BH tree, and how it is used.

4.1. Space requirement for storing multipoles.

Before we analyze the algorithm for computing the multipoles, we need to know
how much space will be required to store them. Each multipole of order n is a
rank n fully symmetric tensor. Such a tensor is completely specified by only a

small fraction of its components. We need to store only the following components,
M3 3 832i1 2432 2in 21 (4.1)

Then, when any of the components is needed in an expression such as Eqn. 3.7,
we can permute the desired indices to obtain the ordering of Eqn. 4.1 and find the

stored element. A simple combinatoric argument reveals that there are exactly

(n -2+ 2) _(n+ 2)2(n +1) (4.2)

-distinct components to M(y), and storage is required for each of them. In order to
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store all multipoles up to some maximum order, p, we will need storage equal to

2 (37)-(3) “

n=0

Thus, the storage requirement for the whole tree of multipoles is

Ceus (737 = 06%), (44

where Cgyg is the number of internal cells in the tree. We found in Chapter 2 that
Cavg is proportional to N. Equation 4.3 is a special case of a very useful identity
[36] which will be needed several times in the following,

> (R)0)-G05) s

0<k<r

Equation 4.4 is an example of the case whenm =0, n =2, r = p, s = 2, and

b=0.

4.2. Computing multipoles.

Two approaches are available for computing the multipole moments of the cells in
the BH tree. The methods have different behavior with respect to the number of
bodies in the cell, and the highest order multipole required. As we shall see, it is
easy to select between the two methods as the calculation proceeds, according to

which will produce the result in the shortest time.

4.2.1. Direct summation.

One possibility is to simply identify all the bodies in each cell, and compute the

multipole moments as

Migin = Y myladt =) (e — i), (46)
zp €V,

Let us investigate how many operations are required to compute the multipole

of one cell using Eqn. 4.6. Equation 4.6 requires computing ("}?) terms. If the
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terms are computed in order of increasing n, then each new term is the product
of a component of ¥ — 7, and a previously computed term. Thus, to compute

all multipoles up to order, p, for a single particle, and a single -, using Eqn. 4.6

£01)-04)

n=0

requires

multiplications. Since each body is computed independently, the total number of
operations required to compute a multipole by direct summation is

N, (” J; 3) , (4.8)

where N, is the number of bodies contained within V..

4.2.2. Parallel axis theorem.

An alternative to direct summation of all bodies contained in a node, is to compute
the multipole moment of a node using only the information available in its eight
children. If we had a procedure which would tell us the multipole moments of
a cell, given the moments of its children, then we could proceed with a bottom-
up traversal of the tree and compute the multipole moments of each cell from
the information already computed for its children. The appropriate mathematical
expression is a generalized parallel axis theorem.[37]

We note that the multipole moments act as tensors under rotations, and
obey some useful transformation rules under translation, as well. If M, (,) are the

multipoles of a mass distribution defined around a point, 7, and M. ,"( n) Tepresents

the same distribution, defined around the point, 7, = 7, + ¢/, then by definition,

w5 = [ @ =y =)o a — g ) (49)

Factoring out powers of y we get

M,;i(:)""i’ = M;'(;’)" - (y" M,;"En_'_’l) + perm.) + (y™ yi’M;?;;‘i’z) + perm.) — ...
(4.10)
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Furthermore, the multipole moments of two distributions, defined around the same
point, may be added term-wise to obtain the multipole expansion of the combined
mass distributions. Equation 4.10 is a generalization of the Parallel Axis Theorem.

For p = 2, and 7, located at the center-of-mass of the V., Eqn. 4.10 reduces to
M3} = M3, + 'y M(g). (4.11)

Note that for the purposes of defining the multipole moments, there is no
logical reason why the point, 7, must lie in the region, V.. Thus, Eqn. 4.10 can
be used to “translate” the multipoles of several disjoint volumes, e.g., the daughter
cells of a cell, to a common point, e.g., the 7, of the parent, where they can be
added, term-wise, to give the multipole of the mass in the set of volumes.

In order to compare Eqn. 4.10 with direct summation, we analyze how many
operations are required to translate a set of multipole moments up through some
~ order, P, using Eqn. 4.10. To implement Eqn. 4.10 for all orders up to p, we first
compute all monomials formed by repeated products of the components of the
vector, ¥, up to order, p. As with the multipole moments themselves, there are
exactly ("F?) such monomials of order, n, making a total of (*3?) up to order, p.

We rewrite Eqn. 4.10 schematically as follows,

m=n
M, = E (Product of m components of y) ® My(n—m)- (4.12)

m=0

Let us assume that all of the “products of m components of y” are available. There
are exactly ("';' 2) such products. Each of them must be multiplied with each of

the components of M,(,_m), and added into the result, giving us a total operation

ECOTYC) e

m=0

count of

Each term is evaluated as a single product and is added to a stored component

of M, (n). Thus, the number of operations required to translate M. (n) is equal to

2("¢).



72

To translate all multipoles up through order p, using Eqn. 4.10 requires

'fz(";s) =2<’”6'6) | (4.14)

n=0

operations. We note that this result is entirely independent of the number of

bodies within V,.

4.2.3. Hybrid algorithm.

The best way to compute all the multipoles in a BH tree is a hybrid of the two
methods just described. A recursive routine, which traverses the hierarchical tree
of volumes from the bottom up is shown in Code 4.1. For each child of a given node,
either TranslateMultipoles is called once, or BodyMulti is called repeatedly to
produce the desired result.

GenerateMultipoles(cell)

for(each child of cell)
GenerateMultipoles(child)

endfor

ChooseRgamma(cell)

if(cell is terminal)
cell.nbody = number of bodies in cell

else
for(each child of cell)

TranslateMultipole(cell, child)

endfor

endif

endfunc

Code 4.1. Function GenerateMultipoles to fill in multipole moments
of the cells in a BH tree.

The information needed to choose 7, may not be known until the multipoles
of the daughter cells have been computed, so the call to ChooseRgamma is delayed

until after the multipole moments of the daughter cells have been computed.
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TranslateMultipole(cell, child)
if( child.nbody < Ncutofs or child is terminal )
DirectSum(cell, child)
else
ParAxis(cell, child)
endif
cell.nbody += child.nbody
endfunc
Code 4.2. Function TranslateMultipole to compute the contribution
of the contents of a child to multipole moment of a cell.

DirectSum(cell, child)
if( child is terminal )
for( each body, b, in child )
BodyMulti(cell, b)
cell.nbody += 1
endfor
else
for( each grandchild of child )
DirectSum(cell, grandchild)
endfor
endif
endfunc
Code 4.3. Function DirectSum to compute the contribution of a child
by direct summation of all contained bodies, using Eqn. 4.6.

The two functions, BodyMulti and ParAxis, are direct implementations of
Eqns. 4.6 and 4.10. Code 4.1 contains an if-clause which decides whether to use
Eqn. 4.6 or 4.10. based on the number of bodies contained in the child which
is being translated. The reason for this is that application of Eqn. 4.10 requires
constant time, while application of Eqn. 4.6 requires time proportional to the
number of bodies contained within the child. There is a particular value of the
number of bodies in the child, Ncutoss, above which Eqn. 4.10 is faster and below
which Eqn. 4.6 is faster. The exact value of Ncutoss, of course, depends on details

of the implementation. We may estimate the value of Ncuiofs from the operation
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counts implied by Eqns. 4.6 and 4.10.

+3 +6
Nmo,f(p3 )z2(p6 ) (4.15)
or
1/p+6
]Vt:utof‘f"""-‘i‘ﬁ(p:3 ) . (4.16)

In practice, Ncutors should be determined empirically from timing data, but
Eqn. 4.16 may be used if timing data is unavailable. In most of our produc- |
tion calculations, p = 2, and Eqn. 4.16 suggests Ncutoss = 3. In fact, we used
Ncutoss = 1, which allows for some simplification of Code 4.3. This choice is almost
certainly not optimal, but is not so far from optimal as to contribute significantly

to total running time.

4.2.4. Operation count.

We now estimate the total running time when GenerateMultipoles is applied
to an entire BH tree. Clearly, the mass and position of each Body effects the
multipole moment of each cell which is an ancestor of the Body. For ancestors
with fewer than Ncyiofs descendants, the effect is computed by DirectSum. For
ancestors with more than N.ytofs descendants, the effect is implicitly computed
by ParAxis.

We first estimate the number of times BodyMulti is executed. Recall from
Section 2.6, that each terminal node of the tree is expected to have approximately
2 bodies. Furthermore, as we ascend the tree, we can expect to find eight times
as many siblings at each higher level. Therefore, the expected number of parents

with fewer than Ncy¢oss descendents is approximately

N uto
logs (2—“—’—’-) : (4.17)

m

and the total number of times BodyMulti is executed is estimated to be

N logg (gﬁ;‘:—fi) . (4.18)
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In order to estimate the number of times ParAxis is executed, we simply need
to estimate the number of cells which have more than N¢u¢o55 descendants. The
Parallel Axis Theorem is applied to each such cell exactly once, to translate the
multipole from the 7, of the cell to the 7, of its parent. The number of cells with
more than N¢y¢07s descendants is exactly equal to the number of non-terminal cells
in a tree constructed with the parameter m, set equal to Ncysoss. In Section 2.9

we found that the expected number of non-terminal cells in a BH tree is

cm N

= (4.19)

Cavg =

Thus, the expected number of internal nodes in a tree with m = Ncu¢0o #f, and

hence, the expected number of executions of ParAxis is approximately

cNeulol!N

. 4.20
Ncutoff ( )

Table 2.1 tabulates values of ¢, for small values of m. The value of ¢, increases

slowly with increasing m, but for m < 20, the value of ¢, is well below unity.
We let Tparazis be the time required to execute ParAxis and TBodyMulti be

the time required to execute BodyMulti, and we assume that Ncys, ff has been

chosen optimally, so that

TParA:ia

—arsTes 4.21
TBodyMulti ( )

Ncutoff =

Then the total time spent in GenerateMultipoles is

N 2N,
TGenerathultipolca = CN,.“,”"_'TParAzia + N logg —_cvtoff TBodyMulti
Ncutoff m

2Ncuto
= NTBodyMuiti (CN“.., ; +logg (';n—t”)) .

(4.22)
Thus, the time to construct the multipole tree is linear in N, with a constant of

proportionality, i.e., TBodyMulti, that scales with the maximum multipole order,
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p, as

(p '; 3). (4.23)

4.3. Choosing 7.

We must first choose an 7, and then find the corresponding multipole moments
for each cell in the tree. Most hierarchical N-body methods take ., to be the
center-of-mass of the cell.[9, 16, 32, 38] This choice has the advantage of causing

the n = 1 multipole, i.e., the dipole moment, to vanish identically. That is

To = J\; / Zp(z)dPz = ML MpTp, (4.24)
© Jy 0 .5,
implies
M(il) = A(zi - rf,)p(a:)daz = 0. (4.25)

This choice appears to have the disadvantage that the magnitude of higher mul-
tipoles might be larger than with some other choice of 7. Greengard[13] takes
7~ to be in the geometric center of each cell. Such a choice affords the best strict
bound on the magnitude of an arbitrary term in the multipole expansion. This is
evident from Chapter 5, where the maximum error is seen to depend on a power
of

b= sup |T—-74]|. (4.26)
z€V,

The quantity b, and hence the maximum possible error, is minimized by placing
7~ in the geometric center of V., like Greengard, rather than at the center of mass
of V,, as is more common. On the other hand, the magnitude of the quadrupole
moment is minimized by taking 7., to be the center of mass. If the calculation will
be to limited to low orders, e.g., only terms up to quadrupole will be computed,
then it is best to use the center of mass for 7,. If the calculation will be include
high order multipoles then it is best to follow Greengard and use the geometric

center of the V.. The center of mass is especially good when one terminates the
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multipole expansion after only one term, in which case, one gets the dipole term
“for free,” and the leading correction is the quadrupole term.

The cost of computing the center of mass of each cell in the tree is easily
accounted for. The computation of the center of mass is comparable in structure
and expense to the computation of the dipole moment (compare Eqn. 4.24 with
Eqn. 4.6, n = 1). Thus, we have a situation in which we either compute the center
of mass, but we don’t compute M(;), because of Eqn. 4.25, or we compute M(,),
but' need not compute the center of mass. In either case, the work has already

been accounted for in the analysis of Section 4.2.

4.4. Evaluating ¢ (n)(r) and Gy n)(T).

Once a suitable set of multipole moments has been computed and stored, the BH
algorithm computes ¢.(n)(r) and @, (n)(r) repeatedly for different values of r and
for the various cells, V,. We now estimate the number of operations in each such
body-cell interaction, i.e., in each evaluation of Eqns. 3.10, 3.25, or 3.48. As with
the mathematical derivation, certain assumptions about the Green’s function and
its derivatives play a significant role in the results of this section. We treat the

same cases as in Chapter 3.

4.4.1. Arbitrary Green’s function.

Since we make no assumptions about the Green’s function, there is no choice but
to evaluate Eqn. 3.10 exactly as written. The right-hand side of each of these
equations is a sum of 3" terms, each of which is of unknown complexity (i.e., it
includes the evaluation of one of the n** partial derivatives of the Green’s function.)

Computing Eqn. 3.10 for each order n up through p, thus requires at least

P 3p+1

D = (4.27)

multiplications, and a like number of evaluations of the derivative of the Green’s

function.
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4.4.2. Spherically symmetric Green’s function.

Aé we saw in the mathematical analysis, it is possible to make considerable simpli-
fications if the Green’s function is spherically symmetric. Now, we must evaluate
Eqn. 3.25 for a particular value of d and é. A detailed accounting of the number
of operations implied by Eqn. 3.25 is not particularly useful, as a practical imple-
menation of any particular Green’s function can certainly be optimized once the
properties of the Green’s function and its derivatives are known. Nevertheless, it

is worthwhile to obtain a bound on the number of operations required to com-
pute repeated inner products like <M ,(1'(';))|e("‘)>. Let us assume that we have first

computed all possible outer products like

ez"eyve;*where, nz+ny,+n;=m. (4.28)

Then the computation of the inner product, <M,(’;':3)|e('")>, requires only a sum-

mation of products of a component of M. (m) with one of the outer products of

v(n)
components of é&. There are precisely ("';" 2) such terms, so the number of opera-

tions required to compute < M ,5;':3) Ie("‘)> is proportional to

(m ; 2). (4.29)

From Eqn. 3.25 the computation of ¢.(y) is a sum of n/2 terms, each of which

consists of a combinatoric factor, an evaluation of g(™)(d) and an inner product
like <M _(7?:1)) Ie("‘) > If we assume the time spent evaluating n/2 instances of g(™)(d)

and the combinatoric factor is negligible, then the total number of operations is

<2n/:2 (" - 2;" + 2). (4.30)

m=0

It is easy to show that this expression is always less than

% (" ; 4) , (4.31)

[p—
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indicating that the evaluation of ¢.,) requires time cubic in n.

Inspection of Eqn. 3.26 reveals that terms which are combined to compute
dy(n) have a very similar formal structure to those used in the computation of
®~(n)- As there are two separate terms on the right-hand side of Eqn. 3.26, we
expect that the computation of @.,(,) will be about twice as costly as that for
Pa(n)-

We may now use Eqn. 4.31 to estimate the total work associated with com-

puting ¢4(n) and @, (,) for all values of n up through p. The total work requires

039009

n=0

less than

operations, indicating that, in general, a full multipole interaction up through
order p, for a spherically symmefric Green’s function, requires time proportional
to pt.

We have assumed, in this analysis, that the products of components of é, as
in Eqn. 4.28, were “pre-computed” before attempting to evaluate expressions like

<M _(Yzl))|e(’")>. In a complete evaluation of all orders through p, we can compute

the products of elements of é only once, and ammortize the cost over all orders,
n. The products of the components of é are essentially the same as the products
necessary to compute the multipole moments of a point mass. In Section 4.2, we

found that this calculation required approximately
2 (" ‘; 3) (4.33)

operations. It is clear that, for a general spherically symmetric Green’s function,
the “pre-computation” of products of € is a negligible expense, compared to the

computation of the ¢, and G (y).

4.4.3. Newtonian potentials.

If the Green’s function represents a softened Newtonian potential, i.e., Eqn. 3.27,

the derivatives, g(™)(d), are particularly easy to evaluate. In fact, all dependence
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on ¢(™(d) in Eqns. 3.34 and 3.35 is obviously contained in the “softened unit-
vector,” h. It is clear that the considerations of the previous section apply, except

that the unit-vector, é, should be replaced by the “softened unit-vector,” }-z‘, in

all expressions like <M 5;':,))|h("')>. In this way, only combinatoric factors and

expressions like (M ,(,?2)|h("')> need to be evaluated, and the total time required

for a full evaluation of all multipoles up through order, p is proportional to

(” 1’ 5) . (4.34)

The pure Newtonian case allows for even more simplification, however. Equa-

tions 3.48 and 3.49 contain only two distinct inner products, <Qf;81)|e(")> and

<Qg?3t)|e(”‘1)>. The combinatorial terms are also considerably simplified. The

total number of operations required to compute both ¢,(n) and @.(y) in the purely

Newtonian case, assuming that products of components of € are pre-computed, is

(" ;’ 2), (4.35)

proportional to

and the time required to evaluate terms up through order p is proportional to

i(n;2)=(p;3)_ (436)

n=0
In this case, the time required to pre-compute products of components of € is
not negligible, contributing approximately the same number of operations as the

computation of the inner products, <QE,'8;) Ie(") > Nevertheless, the total operation

count is proportional to p*.

4.5. Choice of the terminal size parameter, m.

We have just seen that the computation of the interaction between a body and a

set of multipoles can be rather costly. It is safe to say that a multipole interaction
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will generally be more time consuming than a simple body-body interaction, i.e.,
a single evaluation of the Green’s function. This leads us to construct multipole
expansions only if there are a sufficient number of particles to achieve a net decrease
in computation time.

If we have a set of N, bodies in the volume, V., as well as a set of multipoles,

M, (n), we can compute the field at a point, 7, in two ways:

N‘Y
#(r) =Y G(F~ &) (4.37)
or ,
$(r) = Y Buim)(r). (4.38)
n=0

Let the time required to evaluate Eqn. 4.37 be
N, Ty, . (4.39)

and the time required to evaluate Eqn. 4.38 be
Th—m. (4.40)

For any particular implementation, we can determine the ratio of the cost of a

body-multipole interaction to the cost of a body-body interaction,

Tb—rn
= . 4.41
9= 7 (4.41)
Clearly, it is never advantageous to use Eqn. 4.38 unless
N, > q. (4.42)

Thus, it is a waste of time and space to compute and store a multipole expansion for
any collection of bodies with fewer than ¢ elements. Furthermore, it is desirable

to have a multipole expansion for any collection of bodies with greater than q
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ComputeAllFields()
for( each body at which forces are required )

body.¢ = O
body.a = 0
ComputeField(body, root of tree)
endfor
endfunc

Code 4.4. Function ComputeAllFields to compute an approximation
to ¢ and @ for each body in simulation, by recursive descent of a BH tree.

elements. We recall from the definition of the BH tree that terminal nodes of the

tree are guaranteed to have m or fewer elements. If we set
m =g, (4.43)

then terminal nodes of the tree need never have multipole expansions, and internal
nodes of the tree, which are guaranteed to contain more than m bodies, should
always contain multipole expansions. Close examination of Code 4.1 reveals that
multipole moments are never computed for terminal nodes, and they are always
computed for internal nodes. A smaller value of m would lead to the computation
of useless multipole moments, while a larger value of m would lead us to use

Eqn. 4.37 on occasions when Egn. 4.38 would be preferable.

4.6. Running time.

Once the tree is complete, we use the algorithm in Code 4.4 to compute all po-
tentials and accelerations. Code 4.4 calls ComputeField which traverses the BH
tree once for each Body. If a terminal node is encountered during the traversal,
then a BBInteraction is computed for each of the bodies contained within the
terminal node. If the OpeningCriterion is satisfied for an internal node, then the
traversal continues with its descendants. Finally, if the OpeningCriterion fails
for an internal node, then the multipole approximation is acceptable, BCInterac-
tion is executed to compute the interaction between the body and the multipole

expansion of the node. The recursive procedure is also shown in Code 4.4.
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ComputeField(body, cell)
if( cell is terminal )
for( each fieldbody in cell )
BBInteraction(body, fieldbody)
endfor
else if( OpeningCriterion(cell, body) )
for( each child of cell )
ComputeField(body, child)
endfor
else
BCInteraction(body, cell)
endif

endfunc

Code 4.5. Function ComputeField computes the interaction between a
specified body, and all bodies lieing in a cell. = BBInteraction computes
the interaction between a specific pair of bodies, while BCInteraction
computes an interaction between a body and the multipole expansion

stored in a cell.

We now consider how many times BBInteraction and how many times
BMinteraction are called during one execution of ComputeAllFields. The “fact”
that the BH algorithm is O(V log N) has been reported repeatedly in the litera-
ture.[16, 38, 19] The literature only contains, however, some very rough justifica-
tions for this claim. In this section, we use some of the machinery developed in
Chapter 2 to attack the running time of the BH algorithm with somewhat more
rigor than has been done before. We shall see that the O(N log N) claim is, in
fact, justified for any collection of bodies drawn independently from an underlying
distribution, p. It is not, however, guaranteed to be true in all circumstances, as

the following counter-example demonstrates.

4.6.1. A counter-example to the O(IN log N) behavior.

Consider a one-dimensional arrangement of N bodies on the unit line, at positions

Tn=2"", 1<n<N. (4.44)
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A one-dimensional BH tree constructed for these points is shown in Figure 4.1.
The bodies are shown on a line-segment in Figure 4.1 and the BH tree is shown
above it in the form of a binary tree. of shorter line-segments. The tree is highly
unbalanced. The right child of any node is terminal, while the left child of all
nodes except one is internal. This unbalanced structure follows from the positions
of the bodies, which clump exponentially closely near the origin.

Now consider the interactions that are computed in the course of traversing
the tree to find the potential at body j. Body j is actually inside j internal cells,
so no matter what the OpeningCriterion, at least j internal cells will be opened,
and j — 1 BBInteractions will be executed (with all bodies, n < j ). Even if we

disregard what happens for n > j, we see that there are at least

N
Npp = Z(j -1) (8.45)

= N(N - 1)/2

body-body interactions computed. Thus, we have a counterexample to the claim
that the BH algorithm is strictly O(N log N).

Nevertheless, this example is clearly contrived. The density of bodies in space
grows exponentially near the origin, and as N increases, new bodies are not dis-
tributed in the same way as the old ones. Thus, there is no underlying distribution
function, p, which could plausibly give rise to bodies distributed in this way for

arbitrarily large N. It is this pathology which causes the BH algorithm to fail.

4.6.2. Interaction volume.

Although the BH algorithm proceeds by treating each body separately, after the
tree is built, analysis of the timing is easier if we focus on the cells. Rather than
asking how many cells does each body interact with, we ask how many bodies does
each cell interact with. Since we also want to know how many BBInteractions
are computed, we also ask if a cell is terminal, then how many BBInteractionsare

computed with the bodies contained in the cell.
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Figure 4.1. One dimensional pathological BH tree.
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We proceed as we did in Chapter 2 with a set of N “bodies,” located at
N independent, identically distributed random positions, restricted to a finite,
cubical volume, Vo. We also imagine a complete hierarchy of BH cells beneath
Vo, extending to arbitrarily small volumes, and we select an arbitrary cell, V.,
somewhere in the hierarchy. We do not, a priori, assume that V., contains any of
the bodies, or even that it is represented in the BH tree constructed from the set
of bodies.

Around V., we identify a set of other regions which will be useful in the
following discussions. Figure 4.2 shows, schematically, the region around V.. Vi4
is the immediate parent of V., in the BH tree. Vpear is the region around V,, for
which OpeningCriterion succeeds, but not including V, itself, i.e., it is the region
in which the multipole approximation cannot be used for V... Vsar is the region
around the parent of V., for which the OpeningCriterion fails (for the parent),
i.e., it is the region in which the multipole approximation is always used for the
parent. Vpiq is the region between Vpear and Vyar, ie., it is the only region in
which the multipole approximation for V. will be used.

Now, let us assume that there are n. bodies in V., nmi¢ bodies in Vmiq, etc.,

and that the integrals of the probability density, p, are

p= [ Ao,
Vs

Pomid = / a(z)dz, (4.46)
Vmid

Then the probability of such a configuration of bodies is given by a multinomial

distribution, which we write formally as

Pn(ny,p1;n2,p25...) = ( .)p;“p;’ ee.(l1=p1—p2—.. GN=mimR2=e (4.47)

n1n2 oy

If there is no possibility of confusion, we will use the following shorter notation
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Vhear i

ar

Figure 4.2. Labeling of regions around V., for computation of BCInter-
actions.
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for the multinomial distribution function,
Pn(ni,n2,...) = Pn(n1,p1;n2,p2;...) (4.48)
The multinomial distribution function obeys some useful identities:

anN(nl, .o ) = NplPN-l(nl - 1, .o .),

N
S Pn(na,...)=Pn(...),

ny=0

m
Z Pn(n1,p1;m —ny,p2;...) = Pn(m,(p1 + p2);- . ),

ny=0

(4.49)

Z PN(n’p) = CN,m(p)’

n=0

N
>~ Pn(n,p) = Dnm(p) = 1= Cn,m(p),

n=m+1

where Cpy, v and Dy, N are defined in Chapter 2. They are, in turn, related to the

incomplete beta function.[34]

4.6.3. Number of BCInteractions.

Now consider a particular cell, V.. The number of BCInteractions in which V.
is the cell is simply the number of bodies in the Vpi4, i.e., nmis. Bodies in V¢,r
cannot interact with V., because their traversal would be terminated before reach-
ing V,. Similarly, bodies in Vpeqr or in V. itself cannot interact with V, because
the OpeningCriterion succeeds, and traversal continues with the descendant<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>